• 제목/요약/키워드: abrasive size

검색결과 164건 처리시간 0.021초

합금크롬주철의 탄화물형상 및 열처리가 내마모성에 미치는 영향 (Effects of Carbide Morphology and Heat Treatment on Abrasion Wear Resistance of Chromium White Cast Irons)

  • Yu, Sung-Kon;Matsubara, Yasuhiro
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.407-413
    • /
    • 2002
  • Eutectic high chromium cast irons containing 17%Cr and 26%Cr were produced for this research by making each of them solidify unidirectionally. Abrasion wear test against SiC or $Al_2$O$_3$bonded paper was carried out using test pieces cut cross-sectionally at several distances from the chill face of castings. The wear resistance was evaluated in connection with the parameters such as eutectic colony size($E_w$), area fraction of boundary region of the colony($S_B$) where comparatively large massive chromium carbides are crystallized and, average diameter of chromium carbides in the boundary region($D_c$). The wear rate($R_w$), which is a gradient of straight line of wear loss versus testing time, was influenced by the type and the particle size of the abrasives. The $R_w$ value against SiC was found to be larger than that against A1$_2$O$_3$under the similar abrasive particle size. In the case of SiC, the $R_w$ value increased with an increase in the particle size. The $R_w$ value also increased as the eutectic colony size decreased, and that of the 17%Cr iron was larger than that of the 26%Cr iron at the same $E_w$ value. Both of the $S_B$ and $D_c$ values were closely related to the $R_w$ value regardless of chromium content of the specimens. The $R_w$ values of the annealed specimens were greater than those of the as-cast specimens because of softened matrix structures. As for the relationship between wear rate and macro-hardness of the specimens, the hardness resulting in the minimum wear rate was found to be at 550 HV30.

규소 결정 표면의 구조 결함의 형성에 미치는 기계적 손상의 영향 (The influence of mechanical damage on the formation of the structural defects on the silicon surface during oxidation)

  • 김대일;김종범;김영관
    • 한국결정성장학회지
    • /
    • 제15권2호
    • /
    • pp.45-50
    • /
    • 2005
  • 규소 표면의 기계적 손상은 산화 공정 중에 규소 표면에 여러 가지 형태의 결함들을 발생 시킨다. 규소 표면에 손상을 주는 마모 입자가 커짐에 따라 OISF보다는 etch pit의 형상이 동굴형인 선 결함(line defects)들이 많이 발생된다. 이들 결함들은 실리콘 결정을 성장시키는 단계에서 형성되는 결함들과는 상호 관련이 없다. 방향성 응고법으로 성장된 규소 결정속에 존재하는 결함들은 주로 twin과 stacking fault들이며 응고과정에서 발생이 예상되는 응력에 의한 전위는 거의 발견되지 않았다. 따라서 Czochralski 법으로 성장된 단 결정 규소뿐 아니라 방향성 응고법으로 성장된 다 결정 규소 기판도 표면의 결함들을 이용하여 extrinsic gettering을 통한 규소 결정 내부의 불순물 제거의 가능성이 높다.

카본 나노튜브 및 알루미나 첨가제가 윤활 및 마모특성에 미치는 영향에 대한 연구 (Study on Influence of Carbon Nanotubes and Alumina Additives to Lubrication and Wear Characteristics)

  • 윤창석;오대산;김현준
    • Tribology and Lubricants
    • /
    • 제33권5호
    • /
    • pp.220-227
    • /
    • 2017
  • In this work, carbon nanotube and nano-size alumina particle are exploited as additive for lubrication experiment. We used pin-on-disk type tribometer to investigate the tribological characteristics of lubricants with respect to additives and rotational speed. We conducted more than 15 trials of tribotests for two hours for each specimen to obtain stable and accurate frictional force and to create measurable wear track on the substrate. We conducted tests at the boundary/mixed lubrication regime to evaluate the influence of additives on the tribological characteristics. We found that the friction coefficient decreased as the rotational speed increased and as additives were added. In particular, the reduction of friction by adding additives was more significant at low rotational speed than at high rotational speed. We speculate that the additives helped to separate and protect the two contacting surfaces at low speed, while the influence of additives was not significant at high speed since sufficiently thick lubricant film was formed. The wear of the substrate was also reduced by adding additives to the lubricant. However, in contrast to friction, the amount of wear at high rotational speed was less when alumina particles were added to the lubricant than the amount of wear at low speed. We speculate that the increased wear at low rotational speed is as a result of the intermittent abrasive wear caused by alumina particles with uneven shape, while the reduced wear at high speed is as a result of sufficient film thickness which prevented the abrasive wear.

표면변환이 Zr-1Nb합금의 아파타이트 석출에 미치는 효과 (Effects of Surface Modification on Biomimetic Deposition of Apatite in Zr-1Nb)

  • 김태호;조규진;홍순익
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.575-580
    • /
    • 2010
  • Effects of the surface modification on the deposition behaviors of apatite crystals in Zr-1Nb plates were studied. Zr-1Nb alloy plates were polished with abrasive papers to have different roughness and some of them were treated in NaOH or coated with collagen before deposition of apatites in the simulated body fluid (SBF). The weight gain due to the deposition of apatite crystals increased as the surface roughness increased in Zr-1Nb. The size of granular apatite crystals were found to be smaller in Zr-1Nb roughened by $162{\mu}m$ abrasive paper than in Zr-1Nb roughened by $8.4{\mu}m$ paper, suggesting the nucleation rate increased with increase of surface roughness. After, 10 days immersion in a SBF, NaOH-treated Zr-1Nb was completely coated with apatite with the deposited apatite weight comparable to that in Ti-6Al-4V. The deposition rate of Zr-1Nb was not appreciably influenced by NaOH treatment unlike the significant influence of NaOHtreatment on the deposition rate of apatite in Ti-6Al-4V. One significant observation in this study is an appreciable increase of the apatite deposition rate after collagen coating both on Zr-1Nb and Ti-6Al-4V plate, which may be caused by the interaction between collagen and $Ca^{+2}$ ions.

구리 용융흔 미세조직 관측을 위한 연마/미세연마 프로세스 개발 (Development of Grinding/Polishing Process for Microstructure Observation of Copper melted Beads)

  • 박진영;방선배
    • 한국화재소방학회논문지
    • /
    • 제32권6호
    • /
    • pp.108-116
    • /
    • 2018
  • 구리 용융흔(Melted bead) 미세조직(Microstructure)은 변형층(Deformed layer)과 원조직(Undeformed layer)으로 구분할 수 있다. 변형층이 존재하는 경우에는 측정오류가 발생되어 연마/미세연마(Grinding/Polishing)를 통하여 변형층을 제거하고 원조직을 관측하여야 한다. 이에 따라 본 연구에서는 구리 용융흔의 미세조직 분석을 위한 연마/미세연마 절차(Process)를 제시하였다. 변형층 제거를 위해 연마재 종류/크기, 연마시간, 연마율의 상관성을 분석하였고 변형층의 두께를 $1{\mu}m$ 이하가 되도록 하였다. 연구결과, 실리콘카바이드 연마재 $15{\mu}m$ (SiC P1200) 2 min, $10{\mu}m$ (SiC P2400) 1 min, 다이아몬드 연마재 $6{\mu}m$ 8 min, $3{\mu}m$ 6 min, $1{\mu}m$ 10 min, $.25{\mu}m$ 8 min 실시하는 새로운 연마/미세연마 절차를 제시하였다. 또한 최종 단계에서 3 min 동안 콜로이달 실리카 $.04{\mu}m$로 화학적 미세연마를 실시함으로써 미세조직의 선명성을 증대시키는 방안도 제시하였다. 연마/미세연마 시간은 총 38 min이 소요되며, 기존에 제시된 시간, 절차보다 단순화 하였다.

초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성 (Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites)

  • 박희섭;류민호;홍순형
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.

Flyash에 의한 STS304 재료의 내침식성 평가 (Evaluation on erosion resistance of STS304 by flyash)

  • 박해웅;이의열
    • 한국표면공학회지
    • /
    • 제34권6호
    • /
    • pp.575-584
    • /
    • 2001
  • Erosion due to abrasive particles contained in gas streams from boilers has been emerged as a significant problem in the coal fired power plants. Particle erosion accounted for approximately 50% of boiler failures and especially flyash erosion was responsible for 20~30% of emergency boiler shutdowns. Particularly, because of the high ash loading and high velocity, most erosion occurs in the boiler tubes and economiser tube bank where the direction of the gas stream changes to $180^{\circ}$ .In this study, a high temperature particle erosion tester was used to evaluate erosion rate in a simulated environment. The erosion parameters such as erosion temperature, particle impact angle, particle velocity and various particle size were changed. Flyash is the combustion product of the pulverized coal, where size is ranging from 1 to $200\mu\textrm{m}$. Flyash composed of mainly SiO$_2$, $A1_2$$_O3$, and $Fe_2$$O_3$has dense spherical particles and irregular particles containing numerous pores and cavities. From the erosion tests at various conditions, the maximum erosion was experienced at impact angles of $30^{\circ}$ to $60^{\circ}$ In addition, erosion rate increased in proportional to velocity and temperature. And from the observation of the eroded surfaces, it was also concluded that 304 stainless steel was mainly eroded by extrusion-forging at high impact angle ($90^{\circ}$) and by microcutting mechanism at low impact angles ($30^{\circ}$ and $45^{\circ}$).

  • PDF

입자지름의 변화에 따른 실리카 복합재료의 마찰 및 마모 특성 (Friction and Wear Characteristics of Silica/Epoxy Composites for various Particle Size)

  • 고성위;김형진;김재동;김창수
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, the friction and wear characteristics of pure epoxy and silica-filled epoxy resin composites with average silica particle diameter of $6-33{\mu}m$ were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and wear rate of these materials against SiC abrasive paper were determined experimentally. The cumulative wear volume tended to increase nonlinearly with increase of sliding distance and depended on diameter of the silica particle for all these composites. The sliding wear tests of the materials demonstrated that the friction coefficient and the wear rate of silica filled epoxy composites were lower than those of the pure epoxy. silica filled epoxy.

  • PDF

계면활성제가 반도체 실리콘 CMP용 슬러리의 분산안정성에 미치는 영향 (Effect of Surfactant on the Dispersion Stability of Slurry for Semiconductor Silicon CMP)

  • 윤혜원;김도연;한도형;김동완;김우병
    • 한국분말재료학회지
    • /
    • 제25권5호
    • /
    • pp.395-401
    • /
    • 2018
  • The improvement of dispersion stability for the primary polishing slurry in a CMP process is achieved to prevent defects produced by agglomeration of the slurry. The dispersion properties are analyzed according to the physical characteristics of each silica sol sample. Further, the difference in the dispersion stability is confirmed as the surfactant content. The dispersibility results measured by Zeta potential suggest that the dispersion properties depend on the content and size of the abrasive in the primary polishing slurry. Moreover, the optimum ratio for high dispersion stability is confirmed as the addition content of the surfactant. Based on the aforementioned results, the long-term stability of each slurry is analyzed. Turbiscan analysis demonstrates that the agglomeration occurs depending on the increasing amount of surfactant. As a result, we demonstrate that the increased particle size and the decreased content of silica improve the dispersion stability and long-term stability.

Comparison of HVOF Thermal Spray Coatings of T800 and WC-Co Powders

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Baek, N.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • 한국표면공학회지
    • /
    • 제39권6호
    • /
    • pp.295-301
    • /
    • 2006
  • Hard chrome plating has been used in surface hard coating over 50 years both for applying hard coating and re-building of worn components. Hard chrome plating solution and mist pollute environment with very toxic $Cr^{6+}$(hex-Cr) known as carcinogen which causes lung cancer, High velocity oxy-fuel (HVOF) thermal spray coatings of WC base cermet and Co-alloy powders are the most promising candidates for the replacement of the traditional hard chrome plating. Surface properties, wear, and friction behaviors of micron size Co-alloy (T800) and micron size WC-l2Co (WC-Co) have been studied for the application as hard coatings. The temperature dependence of wear and friction behaviors of T800 and WC-Co have been investigated at the temperature of $25^{\circ}C$ and $538^{\circ}C$ for the application to high speed spindle.