• Title/Summary/Keyword: abrasive powders

Search Result 26, Processing Time 0.029 seconds

SiC Synthesis by Using Sludged Si Power (폐슬러지 Si 분말을 이용한 SiC 제조)

  • 최미령;김영철;장영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.67-71
    • /
    • 2003
  • Sawing silicon ingot with abrasive slurry generates sludge that includes abrasive powders, cutting oil, and silicon powders. The abrasive powders and cutting oil are being separated and reused. Mixing the remained stodged silicon powders with carbon powders and subsequent heat-treatment are conducted to produce silicon carbide. The size of SiC whiskers and powders was smaller than the conventionally grown silicon carbide whiskers that were synthesized by adding micron-size metal impurities. Impurity related mechanism is attributed to the formation of the silicon carbide whiskers, as metal impurities are contained in the stodged silicon powders.

  • PDF

Recovery of abrasives from electrical industry sludge

  • Cho Sung-Baek;Kim Sang-Bae;Cho Keon-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.637-641
    • /
    • 2003
  • Abrasive powders were recovered from electrical industry sludge by simple physical separation for their recycling. The raw electrical industry sludge was filter pressed, dried, dispersed and then classified by air classifier at various conditions. The three kinds of particles with different particle size distribution were classified by controlling rotor speed and air volumes of the classifier. The recovered abrasive powders, which are classified at 5,000,9000 and 13,000 rpm of rotor speed, are almost same properties to raw pumice, garnet and rouge powders, respectively. The results of particle size analysis, X-ray diffraction and SEM observation show that the recovered powders can be reused as an abrasive powders.

  • PDF

A Study on the Recycling of Silica Slurry Abrasives by Filtering (필터링에 의한 실리카 슬러리 연마제의 재활용에 관한 연구)

  • Seo Yong-Jin;Park Sung-Woo;Lee Woo-Sun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.551-555
    • /
    • 2004
  • In this paper, in order to reduce the high COO (cost of ownership) and COC (cost of consumables), we have collected the silica abrasive powders by filtering method after subsequent CMP (chemical mechanical polishing) process for the purpose of abrasives recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size distribution and FE-SEM (field emission-scanning electron microscope) measurements of abrasive powders. It was annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable rate of removal and good planarity with commercial products. Consequently we can expect the saving of high cost slurry.

Preparation of Silicon Nitride-silicon Carbide Composites from Abrasive SiC Powders

  • Kasuriya, S.;Thavorniti, P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1091-1092
    • /
    • 2006
  • Silicon nitride - silicon carbide composite was developed by using an abrasive SiC powders as a raw material. The composites were prepared by mixing abrasive SiC powder with silicon, pressing and sintering at $1400^{\circ}C$ under nitrogen atmosphere in atmosphere controlled vacuum furnace. The proportion of silicon in the initial mixtures varied from 20 to 50 wt%. After sintering, crystalline phases and microstructure were characterized. All composites consisted of ${\alpha}-Si_3N_4$ and ${\beta}-Si_3N_4$ as the bonding phases in SiC matrix. Their physical and mechanical properties were also determined. It was found that the density of the obtained composites increased with an increase in the $Si_3N_4$ content formed in the reaction.

  • PDF

Magnetic Abrasive Deburring Character Analysis According to the powders (Powder의 특성에 따른 Magnetic Abrasive Deburring 특성분석)

  • ;;Yuri M. Baron;Vladimir S. Polyshuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1877-1880
    • /
    • 2003
  • We were interest in Deburring using MAF(magnetic abrasive finishing) method. So Magnetic inductor was designed and manufactured to generate proper magnetic induction fer deburring the burr formed in drilling SM45C. We experienced according to the Rotational speed, table feed rate, grain size of powder and working gap are changed to investigate the effect on deburring. At this time we experienced in abrasive effect mainly.

  • PDF

Characteristics of Fe-WC composite powders for Magnetic Abrasive (자성연마용 Fe-WC복합지립의 조직특성)

  • Lee, Yeong-Ran;Bae, Seung-Yeol;Gwon, Dae-Hwan;An, In-Seop;Kim, Yu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.907-911
    • /
    • 2001
  • In order to improve the grindability of magnetic abrasive, Fe-WC magnetic abrasives were made by a plasma melting method after ball milling at various times. This study aims to investigate homogeneously distributed hard phases in Fe matrix and strong bonding between the Fe-matrix and the hard phase. According to XRD, SEM and OM observation, Fe-WC magnetic abrasive powders exhibit the best grindability by plasma melting for 30h ball milling. As a result of magnetic abrasive polishing, the surface roughness, R_{max}$ 5.0$\mu\textrm{m}$, before magnetic abrasive polishing, was reduced to R_{max}$ 2.4$\mu\textrm{m}$. The new magnetic abrasive polishing process is thought to be the useful methods for the automation of three dimensional surface polishing.

  • PDF

A Study on Recycle of Abrasive Particles in One-used Chemical Mechanical Polishing (CMP) Slurry (산화막 CMP 슬러리의 연마 입자 재활용에 관한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Kim, Gi-Uk;Choi, Woon-Sik;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.145-148
    • /
    • 2003
  • Recently, the recycle of CMP (chemical mechanical polishing) slurries have been positively considered in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in CMP process. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are one of the most important components. Especially, the abrasive particles of slurry are needed in order to achieve a good removal rate. However, the cost of abrasives, is still very high. In this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slury, As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

A Study on the recycle of CMP Slurry Abrasives (CMP 슬러리 연마제의 재활용에 대한 연구)

  • Lee, Kyoung-Jin;Kim, Gi-Uk;Park, Sung-Woo;Choi, Woon-Shik;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.109-112
    • /
    • 2003
  • Recently, CMP (Chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of reused silica slurry in order to reduce the costs of CMP slurry. Also, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

A study on the recycle of reused slurry abrasives (CMP 폐슬러리내의 필터링된 연마 입자 재활용에 관한 연구)

  • Kim, Gi-Uk;Seo, Yong-Jin;Park, Sung-Woo;Jeong, So-Young;Kim, Chul-Bok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.50-53
    • /
    • 2003
  • CMP (chemical mechanical polishing) process remained to solve several problems in deep sub-micron integrated circuit manufacturing process. especially consumables (polishing pad, backing film, slurry, pad conditioner), one of the most important components in the CMP system is the slurry. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are important in determining polish rate and planarization ability of a CMP process. However, the cost of abrasives is still very high. So, in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

Wear Characteristics of the Extruded Bars of Hypereutectic Al-Si Alloy Powders produced by Rapid Solidification Process (급속응고법으로 제조한 과공정 Al-Si합금분말 압출재의 마멸특성)

  • Ahn, Young-Nam;Cho, Gue-Serb;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.447-454
    • /
    • 1994
  • Wear resistance and wear mechanism of hypereutectic Al-($15{\sim}40$)wt%Si alloys were investigated. Primary Si particles under $20{\mu}m$ size were formed in hypereutectic Al-Si alloy powders due to rapid solidification. But the Si particles of extruded bars were finely distributed in smaller size than that of atomized powders. The wear mechanism of hypereutectic Al-Si alloys was divided into three types of wear phenomena, which were abrasive wear, delamination wear and severe adhesive wear according to sliding speed and load. At low sliding speed and load, wear mechanism was abrasive wear, so Al-15wt%Si alloy showed the best wear resistance. At high sliding speed and load, wear mechanism was adhesive wear, and Al-40wt%Si alloy showed the best wear resistance.

  • PDF