• 제목/요약/키워드: abnormal growth

검색결과 709건 처리시간 0.034초

Contribution of the Interface Energies to the Growth Process of Cemented Carbides WC-Co

  • Lay, Sabine;Missiaen, Jean-Michel;Allibert, Colette H
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.332-333
    • /
    • 2006
  • The driving forces and the probable processes of WC-Co grain growth are reanalysed from recent data of interface energy and microstructure. Grain growth is driven by the disappearing of the high energy WC/WC and WC/Co interfaces with habit planes different from {0001}, ${10\bar{1}0}$ and ${11\bar{2}0}$ facets and by the area decrease of the WC/WC and WC/Co interfaces with {0001} and ${10\bar{1}0}$ habit planes. Grain growth mainly results of dissolution-precipitation. Abnormal grains are likely formed by defects assisted nucleation.

  • PDF

Carbide Grain Growth in Cemented Carbides

  • Mannesson, Karin;Agren, John
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.336-337
    • /
    • 2006
  • During sintering of cemented carbides abnormal grain growth is often observed but cannot be understood from the classical LSW-theory. A model based on 2-D nucleation of new crystalline layers and a grain-size distribution function is formulated and the equations are solved numerically. Experimental studies and computer simulations show that the initial grain size distribution has a strong effect on the grain growth behavior. For example, a fine-grained powder can grow past a coarser powder.

  • PDF

Effect of Residual Binder on Grain Growth during Sintering of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$

  • Yun, Jung-Yeul;Jang, Wook-Kyung;Jeon, Jae-Ho;L.Kang, Suk-Joong
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.209-210
    • /
    • 2006
  • Organic binders are usually pre-mixed with ceramic powders to enhance the formability during the shape forming process. These binders, however, must be eliminated before sintering in order to avoid pore formation and unusual grain growth during sintering. The present work was performed to investigate the effects of residual binder on grain growth behavior during sintering of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ piezoelectric ceramics. The microstructures of sintered samples were examined for various thermal processes and atmosphere at debinding. Addition of binder seems to promote abnormal grain growth especially in incompletely debinded regions and to make the grain shape change from corner-rounded to faceted.

  • PDF

Effect of Interface Structures on Densification and Grain Growth during Sintering

  • Hwang, Nong-Moon
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.62-63
    • /
    • 2006
  • Both densification and grain growth are driven by the reduction of the interfacial area, kinetics of which depends strongly on the interface structure. Abnormal grain coarsening in the system of singular solid/liquid interface such as WC-Co alloys was explained by the growth mechanism of 2-dimensional nucleation. Based on this concept, the marked inhibition of coarsening of WC grains by VC addition can be approached by the increase in the step free energy, which increases the barrier of 2-dimensional nucleation. The activated sintering in tungsten powders can be approached by the interface structure change induced by the addition of a small amount of nickel.

  • PDF

(K0.5Na0.5)NbO3 세라믹스의 초기 분말 입도 분포가 소결체의 미세구조에 미치는 영향 (Effect of Initial Particle Size Distribution of (K0.5Na0.5)NbO3 Powders on Microstructure of Their Sintered Ceramics)

  • 유일열;최성희;조경훈
    • 열처리공학회지
    • /
    • 제35권2호
    • /
    • pp.57-65
    • /
    • 2022
  • In this study, the effect of the initial particle size distribution (PSD) of (K0.5Na0.5)NbO3 powders on the microstructure of sintered ceramics was investigated. (K0.5Na0.5)NbO3 powders with uni-, bi-, tri-, and quad-modal PSDs were obtained through a planetary ball-mill. For the specimens sintered at 1080℃, the growth of abnormal grains was promoted from the powders exhibiting quad- and tri-modal PSDs with a high content of large particles, resulting in a microstructure in which huge abnormal grains were predominant. However, as the number of peaks in PSD and the overall particle size decreased, the abnormal grain growth was suppressed and the grain growth of small particles started, resulting in a microstructure with a uniform grain size. For the specimens sintered at 1100℃, huge abnormal grains were not observed due to the decrease in the critical driving force for 2D nucleation even when powders with quad- and tri-modal PSDs were used. It was confirmed that when powder with unimodal PSD was used, a uniform microstructure that was not significantly affected by the sintering temperature could be obtained. The results of this study demonstrate that the microstructure of (K0.5Na0.5)NbO3-based ceramics can be controlled by controlling the particle size of the initial powder.

Abnormal Grain Growth Mechanism of Calcium Hexaluminate Phase

  • Song, Jun-Ho;Jo, Young-Jin;Bang, Hee-Gon;Park, Sang-Yeup
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.525-526
    • /
    • 2006
  • Calcium-hexaluminate phase $(CA_6)$ is known to be effective for the crack shielding due to the spinel block crystal structure. In this study, we focused to the control of $CA_6$ morphology for good damage tolerance behavior in alumina and zirconia/calcium-hexaluminate $(CA_6)$ composites. Calcium-hexaluminate $(CA_6)$ composites were prepared from zirconia, alumina and calcium carbornate powders. Calcium-hexaluminate $(CA_6)$ phase was obtained by the solid reaction through the formation of intermediate phase $(CA_2)$. $CA_6$ phase showed the column type abnormal grain grown behavior composed of small blocks. Due to the typical microstructure of $CA_6$, alumina and zirconia/calcium-hexaluminate composites provide a well controlled crack propagation behavior.

  • PDF

오스테나이트계 고크롬강의 가스질화거동에 관한 연구 (GasNitriding Bechavior Austenitic High Cr Steels)

  • 김영희;김도경
    • 열처리공학회지
    • /
    • 제11권4호
    • /
    • pp.258-267
    • /
    • 1998
  • For the purpose of investigating the growth characteristics and composition of nitrides, gas nitridings of the austenitic stainless steel, STR 36 heat resisting steel and martensitic stainless steel are investigated at the temperature ranges between $500^{\circ}C$ and $675^{\circ}C$ for 5hours under the $75%NH_3+5%CO_2+20%$Air gas atmosphere. When gas nitriding the austentic stainless steel and STR 36 heat resisting alloy, the abnormal growth behavior of compound layer deviating from the conventional diffusion law with increasing temperature appears, while the compound layer of martensitic stainless steel shows the normal diffusional growth behavior. From the examination of microstructure, X-ray diffraction and hardness test, it is concluded that the abnormal growth behavior of compound layer with increasing temperature induces from the formation and dissolution of CrN and ${\gamma}^{\prime}-Fe_4N$ at the nitriding temperature ranges of $600{\sim}650^{\circ}C$.

  • PDF

Al2O3-SiC 복합재료의 미세조직 및 기계적 물성에 미치는 SiC 원료분말의 크기 영향 (Effect of SiC Particle Size on the Microstructure and Mechanical Properties Of Al2O3-SiC Composite)

  • 채기웅
    • 한국세라믹학회지
    • /
    • 제41권2호
    • /
    • pp.125-130
    • /
    • 2004
  • 서로 다른 크기의 SiC 원료분말을 첨가한 A1$_2$O$_3$-SiC 복합재료의 미세조직과 그에 따른 기계적 물성의 변화를 관찰하였다. 0.15 $mu extrm{m}$의 SiC가 첨가된 복합재료의 경우 기지상의 입성장이 효과적으로 억제되었다 그러나, 소수의 비정상입자가 생성된 이후에는 이들 입자의 급격한 성장으로 불규칙한 형상의 커다란 입자로 구성된 미세조직을 보이며, 파괴강도값은 급격히 감소하였다. 3 $\mu\textrm{m}$의 SiC가 첨가된 경우에는 기지상의 입성장이 일어났으나, 소수의 비정상입자가 생성된 이후에는 과도한 입성장은 억제되고 일정한 크기의 비정상입자가 시편 전체에 균일하게 형성된 미세조직을 보였다. 한편, 0.15 $\mu\textrm{m}$와 3 $\mu\textrm{m}$의 SiC 입자를 동시에 첨가한 시편은 균일한 크기의 비정상입성장의 미세조직을 보였으나, 비정상입성장이 일어났음에도 불구하고 기계적 물성은 우수하게 유지되었다 즉, 비정상입성장에 의해 미세조직에는 큰 변화가 일어났으나, 파괴강도값에는 변화가 없었다.

페라이트 이상 입성장 (Abnormal Grain Growth in Ferrites)

  • Shigeru Ito
    • 자원리싸이클링
    • /
    • 제9권5호
    • /
    • pp.16-21
    • /
    • 2000
  • Generation of abnormally large grains in the microstructure of small grains has been investigated on some ferrites. Some fractions of large grains were observed in the microstructue of sintered ZnFe$_2$O$_4$, Mn-ZnFe$_2$O$_4$, Fe$_3$O$_4$(in $N_2$) and MnFe$_2$O$_4$(in air). On the other hand, the large grains were not observed in $NiFe_2$$O_4$ and $CoFe_2$$O_4$, independent of calcining and sintering conditions. The large grains seem to be generated in such ferrites that are easy to very their compositions or valencies at high temperatures. as the sintering proceeded, the number of large grains was increasing to from a continuous structure consisting of large grains, while the size of large grains did not increase remarkably. In addition, the growth of small grains was also very slow during the generation of the large grains. The large grains appeared be suddenly generated after some induction periods. Avrami equation could be applied to the relation between net volume of large grains and sintering time. Thus, the grain boundaries may be strongly stabilized when the large grains are generated. The large grain is generated y the local activation of the stabilized rain boundaries, which is caused by the variation of composition or valencies during sintering. It is concluded that the essence of the abnormal gain growth is not the generation of abnormally large grains, but the abnormal stabilization and the local activation of he grain boundaries.

  • PDF