• 제목/요약/키워드: a.c assisted field

검색결과 52건 처리시간 0.028초

저온 태양열을 이용한 생물학적 오수 처리 장치 실증 실험 (Field Test for a Biological Nitrogen Treatment System with Low Temperature Solar Thermal Energy)

  • 정모;이동원
    • 한국태양에너지학회 논문집
    • /
    • 제28권2호
    • /
    • pp.34-41
    • /
    • 2008
  • A low-temperature solar thermal system assisting a biological nitrogen treatment reservoir was designed and field-tested. A large tank whose temperature was maintained at about $25-30^{\circ}C$ to enhance the performance of a biological nitrogen treatment process was heated by an array of flat plate solar collectors. Test results revealed that the overall collector efficiency was above 50% for the most cases tested. This high efficiency was possible owing to the relatively low collector temperature that can be traced back to the reservoir temperature. A substantial enhancement in nitrogen treatment was observed as a result of maintaining the reservoir temperature higher.

Characterization of Lateral Type Field Emitters with Carbon-Based Surface Layer

  • Lee, Myoung-Bok;Lee, Jae-Hoon;Kwon, Ki-Rock;Lee, Hyung-Ju;Hahm, Sung-Ho;Lee, Jong-Hyun;Lee, Jung-Hee;Choi, Kyu-Man
    • Journal of Information Display
    • /
    • 제2권3호
    • /
    • pp.60-65
    • /
    • 2001
  • Lateral type poly-silicon field emitters were fabricated by utilizing the LOCOS (Local Oxidation of Silicon) process. For the implementation 'of an ideal field emission device with quasi-zero tunneling barrier, a new and fundamental approach has used conducted by introducing an intelligent carbon-based thin layer on the cathode tip surface via a field-assisted self-aligning of carbon (FASAC) process. Fundamental lowering of the turn-on field for the electron emission was feasible through the control of both the tip shape and surface barrier height.

  • PDF

Study on the Magnetic Characteristics of Anisotropic SmCo7-type Alloys Synthesized by High-energy Surfactant-assisted Ball Milling

  • Yu, N.J.;Zhang, P.Y.;Shi, Y.J.;Pan, M.X.;Zhang, S.Y.;Ge, H.L.;Lu, Y.C.
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.340-344
    • /
    • 2014
  • An effective process was employed for synthesizing anisotropic magnetic $SmCo_7$-type alloy flakes with high coercivity, which is highly desirable for many applications. The highest coercivity of 16.3 kOe corresponds to a typical flake thickness of 200 nm for the 3-h ball-milled sample. The anisotropy field was calculated by measuring the parallel and perpendicular directions to the easy magnetization direction of the powders. The anisotropy field decreased with the increase of the ball milling time, thus indicating that the decrease of coercivity was mainly caused by the reduction of the anisotropy field. Microstructure analysis indicated that the morphology, grain size, and anisotropy field of these samples have a great influence on the magnetic properties.

Nanostructured Bulk Ceramics (Part IV. Polymer Precursor Derived Nanoceramics)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • 한국세라믹학회지
    • /
    • 제47권3호
    • /
    • pp.205-209
    • /
    • 2010
  • In the last (fourth) section, the discussion will entail a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method.

결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구 (Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells)

  • 송세영;강민구;송희은;장효식
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

Fabrication and Magnetic Properties of Co Nanostructures in AAO Membranes

  • Jung, J.S.;Malkinski, L.;Lim, J.H.;Yu, M.;O'Connor, C.J.;Lee, H.O.;Kim, E.M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.758-760
    • /
    • 2008
  • Nanoporous AAO (Anodic Aluminum Oxide) membranes have many advantages as a template for variety of magnetic materials. Materials can be embedded into the pores by electrodeposition, sputtering or magnetic-field-assisted infiltration of magnetic nanoparticles. This work focuses on the fabrication of the magnetic structures in the AAO templates by electrodeposition. Our method allows the controlled growth of Co nanostructures within the porous alumina membrane in the form of dots, rods and long wires. The shape of Co nanostructures has been investigated by field emission scanning electron microscope (FESEM). The magnetic hysteresis loops of Co nanostructures were measured using SQUID at 5 K and 300 K. The magnetic properties of the Co nanostructures are proportional to their aspect ratios and can be controlled by changing the aspect ratios.

Robot-Assisted Transoral Odontoidectomy : Experiment in New Minimally Invasive Technology, a Cadaveric Study

  • Yang, Moon-Sul;Yoon, Tae-Ho;Yoon, Do-Heum;Kim, Keung-Nyun;Pennant, William;Ha, Yoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제49권4호
    • /
    • pp.248-251
    • /
    • 2011
  • Objective : In the field of spinal surgery, a few laboratory results or clinical cases about robotic spinal surgery have been reported. In vivo trials and development of related surgical instruments for spinal surgery are required before its clinical application. We investigated the use of the da $Vinci^{(R)}$ Surgical System in spinal surgery at the craniovertebral junction in a human cadaver to demonstrate the efficacy and pitfalls of robotic surgery. Methods : Dissection of pharyngeal wall to the exposure of C1 and odontoid process was performed with full robotic procedure. Although assistance of another surgeon was necessary for drilling and removal of odontoid process due to the lack of appropriate end-effectors, successful robotic procedures for dural sutures and exposing spinal cord proved its safety and dexterity. Results : Robot-assisted odontoidectomy was successfully performed in a human cadaver using the da $Vinci^{(R)}$ Surgical System with few robotic arm collisions and minimal soft tissue damages. Da $Vinci^{(R)}$ Surgical System manifested more dexterous movement than human hands in the deep and narrow oral cavity. Furthermore, sutures with robotic procedure in the oral cavity demonstrated the advantage over conventional procedure. Conclusion : Presenting cadaveric study proved the probability of robot-assisted transoral approach. However, the development of robotic instruments specific to spinal surgery must first precede its clinical application.

Bond Strength of Carbon Fiber Sheet on Concrete Substrate Processed by Vacuum Assisted Resin Transfer Molding

  • Uddin, N.;Shohel, M.;Vaidya, U.K.;Serrano-Perez, J.C.
    • Advanced Composite Materials
    • /
    • 제17권3호
    • /
    • pp.277-299
    • /
    • 2008
  • High quality and expedient processing repair methods are necessary to enhance the service life of bridge structures. Deterioration of concrete can occur as a result of structural cracks, corrosion of reinforcement, and freeze.thaw cycles. Cost effective methods with potential for field implementation are necessary to address the issue of the vulnerability of bridge structures and how to repair them. Most infrastructure related applications of fiber-reinforced plastics (FRPs) use traditional hand lay-up technology. The hand lay-up is tedious, labor-intensive and relies upon personnel skill level. An alternative to traditional hand lay-up of FRP for infrastructure applications is Vacuum Assisted Resin Transfer Molding (VARTM). VARTM uses single sided molding technology to infuse resin over fabrics wrapping large structures, such as bridge girders and columns. There is no work currently available in understanding the interface developed, when VARTM processing is adopted to wrap fibers such as carbon and/or glass over concrete structures. This paper investigates the interface formed by carbon fiber processed on to a concrete surface using the VARTM technique. Various surface treatments, including sandblasting, were performed to study the pull-off tensile test to find a potential prepared surface. A single-lap shear test was used to study the bond strength of CFRP fabric/epoxy composite adhered to concrete. Carbon fiber wraps incorporating Sikadur HEX 103C and low viscosity epoxy resin Sikadur 300 were considered in VARTM processing of concrete specimens.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Low-Temperature Sintering and Piezoelectric Properties of $(Na_{0.5}K_{0.5})NbO_3$ Lead-Free Piezoelectric Ceramics

  • Seo, In-Tae;Park, Hwi-Yeol;Choi, Jae-Hong;Nahm, Sahn
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술회의 초록집
    • /
    • pp.5-5
    • /
    • 2010
  • $(Na_{0.5}K_{0.5})NbO_3$ (NKN) ceramic with 1.5 mol% CuO added (NKNC) was well sintered even at a low temperature of $900^{\circ}C$ with the addition of ZnO. Most of the ZnO reacted with the CuO and formed the liquid phase that assisted the densification of the specimens at $900^{\circ}C$. A few $Zn^{2+}$ ions entered the matrix of the specimens and increased the coercive field ($E_c$) and $Q_m$ values of the specimens. High-piezoelectric properties of $k_p=0.37$, $Q_m=755$, and ${\varepsilon}_3\;^T/{\varepsilon}_0=327$ were obtained from the NKNC ceramics containing 1.0 mol% ZnO sintered at $900^{\circ}C$ for 2 h.

  • PDF