DOI QR코드

DOI QR Code

Robot-Assisted Transoral Odontoidectomy : Experiment in New Minimally Invasive Technology, a Cadaveric Study

  • Yang, Moon-Sul (Department of Neurosurgery, Guri Hospital, Hanyang University College of Medicine) ;
  • Yoon, Tae-Ho (Department of Neurosurgery, Spine and Spinal Cord Research Institute, Yonsei University College of Medicine) ;
  • Yoon, Do-Heum (Department of Neurosurgery, Spine and Spinal Cord Research Institute, Yonsei University College of Medicine) ;
  • Kim, Keung-Nyun (Department of Neurosurgery, Spine and Spinal Cord Research Institute, Yonsei University College of Medicine) ;
  • Pennant, William (da Vinci Tranining Center, Yonsei University College of Medicine) ;
  • Ha, Yoon (Department of Neurosurgery, Spine and Spinal Cord Research Institute, Yonsei University College of Medicine)
  • Received : 2010.08.13
  • Accepted : 2011.03.27
  • Published : 2011.04.28

Abstract

Objective : In the field of spinal surgery, a few laboratory results or clinical cases about robotic spinal surgery have been reported. In vivo trials and development of related surgical instruments for spinal surgery are required before its clinical application. We investigated the use of the da $Vinci^{(R)}$ Surgical System in spinal surgery at the craniovertebral junction in a human cadaver to demonstrate the efficacy and pitfalls of robotic surgery. Methods : Dissection of pharyngeal wall to the exposure of C1 and odontoid process was performed with full robotic procedure. Although assistance of another surgeon was necessary for drilling and removal of odontoid process due to the lack of appropriate end-effectors, successful robotic procedures for dural sutures and exposing spinal cord proved its safety and dexterity. Results : Robot-assisted odontoidectomy was successfully performed in a human cadaver using the da $Vinci^{(R)}$ Surgical System with few robotic arm collisions and minimal soft tissue damages. Da $Vinci^{(R)}$ Surgical System manifested more dexterous movement than human hands in the deep and narrow oral cavity. Furthermore, sutures with robotic procedure in the oral cavity demonstrated the advantage over conventional procedure. Conclusion : Presenting cadaveric study proved the probability of robot-assisted transoral approach. However, the development of robotic instruments specific to spinal surgery must first precede its clinical application.

Keywords

References

  1. Ballantyne GH : Robotic surgery, telerobotic surgery, telepresence, and telementoring. Review of early clinical results. Surgl Endosc 16 : 1389-1402, 2002 https://doi.org/10.1007/s00464-001-8283-7
  2. Binder J, Kramer W : Robotically-assisted laparoscopic radical prostatectomy. BJU Int 87 : 408-410, 2001
  3. Crockard HA : The transoral approach to the base of the brain and upper cervical cord. Ann R Coll Surg Engl 67 : 321-325, 1985
  4. Crockard HA : Transoral surgery : some lessons learned. Br J Neurosurg 9 : 283-294, 1995 https://doi.org/10.1080/02688699550041304
  5. Crockard HA, Calder I, Ransford AO : One-stage transoral decompression and posterior fixation in rheumatoid atlanto-axial subluxation. J Bone Joint Surg Br 72 : 682-685, 1990
  6. Hockstein NG, O'Malley BW Jr, Weinstein GS : Assessment of intraoperative safety in transoral robotic surgery. Laryngoscope 116 : 165-168, 2006 https://doi.org/10.1097/01.mlg.0000199899.00479.75
  7. Husain M, Rastogi M, Ojha BK, Chandra A, Jha DK : Endoscopic transoral surgery for craniovertebral junction anomalies. J Neurosurg Spine 5 : 367-373, 2006 https://doi.org/10.3171/spi.2006.5.4.367
  8. Iseli TA, Kulbersh BD, Iseli CE, Carroll WR, Rosenthal EL, Magnuson JS : Functional outcomes after transoral robotic surgery for head and neck cancer. Otolaryngol Head Neck Surg 141 : 166-171, 2009 https://doi.org/10.1016/j.otohns.2009.05.014
  9. Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL : Expanded endonasal approach : the rostrocaudal axis. Part I. Crista galli to the sella turcica. Neurosurg Focus 19 : E3, 2005
  10. Kerschbaumer F, Kandziora F, Klein C, Mittlmeier T, Starker M : Transoral decompression, anterior plate fixation, and posterior wire fusion for irreducible atlantoaxial kyphosis in rheumatoid arthritis. Spine (Phila Pa 1976) 25 : 2708-2715, 2000 https://doi.org/10.1097/00007632-200010150-00029
  11. Kim MJ, Ha Y, Yang MS, Yoon DH, Kim KN, Kim H, et al. : Robot-assisted anterior lumbar interbody fusion (ALIF) using retroperitoneal approach. Acta Neurochir 152 : 675-679, 2010 https://doi.org/10.1007/s00701-009-0568-y
  12. Lanfranco AR, Castellanos AE, Desai JP, Meyers WC : Robotic surgery : a current perspective. Ann Surg 239 : 14-21, 2004 https://doi.org/10.1097/01.sla.0000103020.19595.7d
  13. Lee JY, Lega B, Bhowmick D, Newman JG, O'Malley BW Jr, Weinstein GS, et al. : Da vinci robot-assisted transoral odontoidectomy for basilar invagination. ORL J Otorhinolaryngol Relat Spec 72 : 91-95, 2010 https://doi.org/10.1159/000278256
  14. Lee JY, O'Malley BW, Newman JG, Weinstein GS, Lega B, Diaz J, et al. : Transoral robotic surgery of craniocervical junction and atlantoaxial spine : a cadaveric study. J Neurosurg Spine 12 : 13-18, 2010 https://doi.org/10.3171/2009.7.SPINE08928
  15. Moore EJ, Olsen KD, Kasperbauer JL : Transoral robotic surgery for oropharyngeal squamous cell carcinoma : a prospective study of feasibility and functional outcomes. Laryngoscope 119 : 2156-2164, 2009 https://doi.org/10.1002/lary.20647
  16. Mukhija VK, Sung CK, Desai SC, Wanna G, Genden EM : Transoral robotic assisted free flap reconstruction. Otolaryngol Head Neck Surg 140 : 124-125, 2009 https://doi.org/10.1016/j.otohns.2008.09.024
  17. Mummaneni PV, Haid RW : Transoral odontoidectomy. Neurosurgery 56 : 1045-1050; discussion 1045-1050, 2005
  18. O'Malley BW Jr, Weinstein GS : Robotic skull base surgery : preclinical investigations to human clinical application. Arch Otolaryngol Head Neck Surg 133 : 1215-1219, 2007 https://doi.org/10.1001/archotol.133.12.1215
  19. O'Malley BW Jr, Weinstein GS, Snyder W, Hockstein NG : Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 116 : 1465-1472, 2006 https://doi.org/10.1097/01.mlg.0000227184.90514.1a
  20. Ozer E, Waltonen J : Transoral robotic nasopharyngectomy : a novel approach for nasopharyngeal lesions. Laryngoscope 118 : 1613-1616, 2008 https://doi.org/10.1097/MLG.0b013e3181792490
  21. Park YM, Lee WJ, Lee JG, Lee WS, Choi EC, Chung SM, et al. : Transoral robotic surgery (TORS) in laryngeal and hypopharyngeal cancer. J Laparoendosc Adv Surg Tech A 19 : 361-368, 2009
  22. Ponnusamy K, Chewning S, Mohr C : Robotic approaches to the posterior spine. Spine (Phila Pa 1976) 34 : 2104-2019, 2009 https://doi.org/10.1097/BRS.0b013e3181b20212
  23. Satava RM : Robotic surgery : from past to future--a personal journey. Surg Clin North Am 83 : 1491-1500, xii, 2003 https://doi.org/10.1016/S0039-6109(03)00168-3
  24. Weinstein GS, O'Malley BW Jr, Desai SC, Quon H : Transoral robotic surgery : does the ends justify the means? Curr Opin Otolaryngol Head Neck Surg 17 : 126-131, 2009 https://doi.org/10.1097/MOO.0b013e32832924f5
  25. Weinstein GS, O'Malley BW Jr, Snyder W, Hockstein NG : Transoral robotic surgery : supraglottic partial laryngectomy. Ann Otol Rhinol Laryngol 116 : 19-23, 2007 https://doi.org/10.1177/000348940711600104
  26. Yang MS, Yoon DH, Kim KN, Kim H, Yang JW, Yi S, et al. : Robot-assisted anterior lumbar interbody fusion in a swine model in vivo test of the da vinci surgical-assisted spinal surgery system. Spine (Phila Pa 1976) 36 : E139-E143, 2011 https://doi.org/10.1097/BRS.0b013e3181d40ba3

Cited by

  1. Endoscopic endonasal resection of the odontoid peg-case report and literature review vol.28, pp.10, 2011, https://doi.org/10.1007/s00381-012-1791-z
  2. Robotic Skull Base Surgery via Supraorbital Keyhole Approach vol.72, pp.1, 2011, https://doi.org/10.1227/neu.0b013e318270d9de
  3. Robotics in Keyhole Transcranial Endoscope-Assisted Microsurgery: A Critical Review of Existing Systems and Proposed Specifications for New Robotic Platforms vol.10, pp.1, 2014, https://doi.org/10.1227/neu.0000000000000123
  4. Evolution from microscopic transoral to endoscopic endonasal odontoidectomy vol.37, pp.4, 2014, https://doi.org/10.3171/2014.7.focus14301
  5. da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety vol.38, pp.2, 2015, https://doi.org/10.1007/s10143-014-0602-2
  6. Transoral robotic-assisted surgery for the approach to anterior cervical spine lesions vol.274, pp.11, 2011, https://doi.org/10.1007/s00405-017-4731-4
  7. Endoscopic approach to the upper cervical spine and clivus: an anatomical study of the upper limits of the transoral corridor vol.159, pp.4, 2017, https://doi.org/10.1007/s00701-017-3103-6
  8. Transoral robotic surgery for sellar tumors: first clinical study vol.127, pp.4, 2011, https://doi.org/10.3171/2016.9.jns161638
  9. Transoral robotic surgery for sellar tumors: first clinical study vol.127, pp.4, 2011, https://doi.org/10.3171/2016.9.jns161638