• Title/Summary/Keyword: a-priori information model

Search Result 96, Processing Time 0.029 seconds

IMAGE DENOISING BASED ON MIXTURE DISTRIBUTIONS IN WAVELET DOMAIN

  • Bae, Byoung-Suk;Lee, Jong-In;Kang, Moon-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.246-249
    • /
    • 2009
  • Due to the additive white Gaussian noise (AWGN), images are often corrupted. In recent days, Bayesian estimation techniques to recover noisy images in the wavelet domain have been studied. The probability density function (PDF) of an image in wavelet domain can be described using highly-sharp head and long-tailed shapes. If a priori probability density function having the above properties would be applied well adaptively, better results could be obtained. There were some frequently proposed PDFs such as Gaussian, Laplace distributions, and so on. These functions model the wavelet coefficients satisfactorily and have its own of characteristics. In this paper, mixture distributions of Gaussian and Laplace distribution are proposed, which attempt to corporate these distributions' merits. Such mixture model will be used to remove the noise in images by adopting Maximum a Posteriori (MAP) estimation method. With respect to visual quality, numerical performance and computational complexity, the proposed technique gained better results.

  • PDF

GLOBAL AXISYMMETRIC SOLUTIONS TO THE 3D NAVIER-STOKES-POISSON-NERNST-PLANCK SYSTEM IN THE EXTERIOR OF A CYLINDER

  • Zhao, Jihong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.729-744
    • /
    • 2021
  • In this paper we prove global existence and uniqueness of axisymmetric strong solutions for the three dimensional electro-hydrodynamic model based on the coupled Navier-Stokes-Poisson-Nernst-Planck system in the exterior of a cylinder. The key ingredient is that we use the axisymmetry of functions to derive the Lp interpolation inequalities, which allows us to establish all kinds of a priori estimates for the velocity field and charged particles via several cancellation laws.

Model-Based Pose Estimation for High-Precise Underwater Navigation Using Monocular Vision (단안 카메라를 이용한 수중 정밀 항법을 위한 모델 기반 포즈 추정)

  • Park, JiSung;Kim, JinWhan
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.226-234
    • /
    • 2016
  • In this study, a model-referenced underwater navigation algorithm is proposed for high-precise underwater navigation using monocular vision near underwater structures. The main idea of this navigation algorithm is that a 3D model-based pose estimation is combined with the inertial navigation using an extended Kalman filter (EKF). The spatial information obtained from the navigation algorithm is utilized for enabling the underwater robot to navigate near underwater structures whose geometric models are known a priori. For investigating the performance of the proposed approach the model-referenced navigation algorithm was applied to an underwater robot and a set of experiments was carried out in a water tank.

Proposing Collaboration Classification Model considering Collaboration Purpose Recognition (목적인지를 반영한 협업 분류 모델 제안)

  • Ju, Jung Eun;Koo, Sang Hoe
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.203-211
    • /
    • 2014
  • In recent highly competitive business environment, collaboration has become one of the important business strategies for companies to survive and/or prosper. There are many different types of collaboration strategies, and it is crucial for companies to select the right ones according to the types of collaboration they require. To select the right type of collaboration options for business, in the past research, there have been two important criteria to classify collaboration types, namely governance (who makes key decisions - one kingpin participant or all players?) and membership (can anyone participate, or just select players?). In this research, we add a new classification criterion, recognition of collaboration purpose, which means whether collaborators know or do not know the purpose of collaboration in advance. Recently, we see many cases in which social media data are used in many unknown purposes a priori. In this research, we add such cases to develop new classification model.

NONLINEAR FLUTTER ANALYSIS USING INVISCID REDUCED ORDER MODELING TECHNIQUE (비점성 저차모델링 기법을 활용한 비선형 플러터 해석)

  • Kim, Y.H.;Kim, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.458-464
    • /
    • 2011
  • A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

  • PDF

3D gravity inversion with Euler deconvolution as a priori information (오일러 디컨벌루션을 사전정보로 이용한 3 차원 중력 역산)

  • Rim, Hyoung-Rae;Park, Yeong-Sue;Lim, Mu-Taek;Koo, Sung-Bon;Kwon, Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.44-49
    • /
    • 2007
  • It is difficult to obtain high-resolution images by 3D gravity inversion, because the problem is extremely underdetermined - there are too many model parameters. In order to reduce the number of model parameters we propose a 3D gravity inversion scheme utilising Euler deconvolution as a priori information. The essential point of this scheme is the reduction of the nonuniqueness of solutions by restricting the inversion space with the help of Euler deconvolution. We carry out a systematic exploration of the growing body process, but only in the restricted space within a certain radius of the Euler solutions. We have tested our method with synthetic gravity data, and also applied it to a real dataset, to delineate underground cavities in a limestone area. We found that we obtained a more reasonable subsurface density image by means of this combination between the Euler solution and the inversion process.

Infrared and Visible Image Fusion Based on NSCT and Deep Learning

  • Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1405-1419
    • /
    • 2018
  • An image fusion method is proposed on the basis of depth model segmentation to overcome the shortcomings of noise interference and artifacts caused by infrared and visible image fusion. Firstly, the deep Boltzmann machine is used to perform the priori learning of infrared and visible target and background contour, and the depth segmentation model of the contour is constructed. The Split Bregman iterative algorithm is employed to gain the optimal energy segmentation of infrared and visible image contours. Then, the nonsubsampled contourlet transform (NSCT) transform is taken to decompose the source image, and the corresponding rules are used to integrate the coefficients in the light of the segmented background contour. Finally, the NSCT inverse transform is used to reconstruct the fused image. The simulation results of MATLAB indicates that the proposed algorithm can obtain the fusion result of both target and background contours effectively, with a high contrast and noise suppression in subjective evaluation as well as great merits in objective quantitative indicators.

Optical Flow Estimation of a Fluid Based on a Physical Model

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.539-544
    • /
    • 2009
  • An estimation of 3D velocity field including occluded parts without maxing tracer to the fluid had not only never been proposed but also impossible by the conventional computer vision algorithm. In this paper, we propose a new method of three dimensional optical flow of the fluid based on physical model, where some boundary conditions are given from a priori knowledge of the flow configuration. Optical flow is obtained by minimizing the mean square errors of a basic constraint and the matching error terms with visual data using Euler equations. Here, Navier-Stokes motion equations and the differences between occluded data and observable data are employed as the basic constrains. we verify the effectiveness of our proposed method by applying our algorithm to simulated data with partly artificially deleted and recovering the lacking data. Next, applying our method to the fluid of observable surface data and the knowledge of boundary conditions, we demonstrate that 3D optical flow are obtained by proposed algorithm.

Stochastic Model for Unification of Stereo Vision and Image Restoration (스테레오 비젼 및 영상복원 과정의 통합을 위한 확률 모형)

  • Woo, Woon-Tak;Jeong, Hong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.9
    • /
    • pp.37-49
    • /
    • 1992
  • The standard definition of computational vision is a set of inverse problems of recovering surfaces from images. Thus the common characteristics of the most early vision problems are ill-posed. The main idea for solving ill-posed problems is to restrict the class of admissible solutions by introducing suitable a priori knowledge. Standard regurarization methods lead to satisfactory solutions of early vision problems but cannot deal effectively and directly with a few general problems, such as discontinuity and fusion of information from multiple modules. In this paper, we discuss limitations of standard regularization theory and present new stochastic method. We will outline a rigorous approach to overcome part of ill-posedness of image restoration, edge detection, and stereo vision problems, based on Bayes estimation and MRF(Markov random field) model, that effectively deals with the problems. This result makes one hope that this framework could be useful in the solution of other vision problems.

  • PDF

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF