• Title/Summary/Keyword: a-glucoamylase

Search Result 191, Processing Time 0.023 seconds

Expression of Aspergillus awamori Glucoamylase Gene in Asperillus nidulans (Aspergillus nidulans내에서 Aspergillus awamori의 Glucoamylase 유전자 발현)

  • 김석준;유준희;정구홍
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.136-140
    • /
    • 1993
  • The A. nidulans expression vector which contained trpC marker gene from A. nidulans was constructed to produce glucoamy]ase. The recombinant plasmid was introduced into auxotrophic mutant A. nidulans B17. Southern blot analysis of the genomic DNA from transformant showed that pKHG2 DNA had integrated into the A. nidulans chromosomes. Northern analysis of the total RNA from transform ant showed that mRNA of glucoamylase gene was synthesized in induction condition. Specific activity of glucoamylase was increased in transform ants. G]ucoamylase was shown to be active in non-denaturing acrylamide gel.

  • PDF

Effect of Plasmid Stability on the Glucoamylase Productivity of Saccharomyces diastaticus Harboring Recombinant Plasmid Containing Glucoamylase Gene STA 1 (Glucoamylase 유전자 STA1이 포함된 재조합 Plasmid를 갖는 Saccharomyces diastaticus 의 Glucoamylase 생산성에 미치는 Plasmid 안정성의 영향)

  • Ahn, Jong-Seog;Hwang, In-Kyu;Jeong, Min-Sun;Mheen, Tae-Ick
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.606-610
    • /
    • 1989
  • For the purpose of improving glucoamylase productivity of Saccharomyces diastaticus, useful yeast in direct ethanol fermentation of starch, the effects of growth rate on the plasmid stability and glucoamylase productivity of S. diastaticus harboring recombinant plasmid pYES 18 containing glucoamylase gene STA 1 were investigated. In a selective medium, the recombinant plasmids were maintained stably at constant level but glucoamylase productivity was very low. On the other hand, in the complex medium containing starch, growth rate of the cell was stimulated by the supplementation of glucose and plasmid stability was improved by growth stimulation. We can conclude that glucoamylase productivity of S. diastaticus harboring the recombinant plasmid was increased as the maintaining of high plasmid stability in the cell.

  • PDF

A Study on the Active site of Glucoamylase from Aspergillus shirousamii

  • Lee Kuly Dong;Yang Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.107-111
    • /
    • 1989
  • Glucoamylase was inactivated with 1-ethyl-2-(dimethylaminopropyl)carbodiimide (EDC) at pH 5.0. Time course of inactivation of glucoamylase was at least biphasic. From the results of the titration of SH groups with Ellman's reagent and hydroxylamine treatment at pH 7.0, it was concluded that the crucial sites of modification were carboxyl groups of glucoamylase. The CD spectrum of EDC-modified glucoamylase suggested that the gross conformation of the native enzyme was retained. The inactivation of glucoamylase was reduced remarkably in the presence of maltose. The logarithm of the half-life of the inactivation of glucoamylase by EDC was a linear function of log[EDC] in each stage indicating that one carboxyl group among the modified ones was crucial for inactivation of glucoamylase. The change in the binding affinity due to modification was determined by using an affinity column. It indicates that the carboxyl group of glucoamylase seems to play a role in both, the catalysis and substrate binding in the first stage, but in the second stage the binding affinity is recovered almost up to that of native enzyme.

Improvement of Glucoamylase Productivity of Saccharomyces diastaticus by Intergration of Glucoamylase Gene, STA, into Chromosomal DHA (Glucoamylase 유전자 STA의 염색체내 삽입에 의한 Saccharomyces diastaticus의 glucoamylase 생성능 향상)

  • 안종석;맹준호;강대욱;황인규;민태익
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.48-53
    • /
    • 1993
  • For the purpose to improve the glucoamylase productivity of Saccharomyces diastaticus, we integrated STA 1 gene into chromosomal DNA of S. diastaticus using YIp vector. After construction of Ylp-STA by the subcloning of STAI (5.3 kb) into YIp5 vector, S. diastaticus GMT-II(a. ura3. STAJ) was transformed by Ylp-STA through homologous recombination at the chromosomal STAJ gene. So we obtained the tram formants that glucoamylase productivity was increased maximum six fold. These strains transformed by the multi-copy integration of Ylp-STA in chromosomal DNA were confirmed by Southern hybridization. And the integrated Ylp-STA was maintained stably during 30 mitotic divisions.

  • PDF

Characterization of Sporulation-Specific Glucoamylase of Saccharomyces diastaticus (Saccharomyces diastaticus의 포자형성 특이 글루코아밀라제의 특성)

  • Kim, Eun-Ju;Ahn, Jong-Seog;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.683-690
    • /
    • 2010
  • The yeast strains of Saccharomyces diastaticus produce one of three isozymes of an extracellular glucoamylase I, II or III, a type of exo-enzyme which can hydrolyse starch to generate glucose molecules from non-reducing ends. These enzymes are encoded by the STA1, STA2 and STA3 genes. Another gene, sporulation-specific glucoamylase (SGA), also exists in the genus Saccharomyces which is very homologous to the STA genes. The SGA has been known to be produced in the cytosol during sporulation. However, we hypothesized that the SGA is capable of being secreted to the extracellular region because of about 20 hydrophobic amino acid residues at the N-terminus which can function as a signal peptide. We expressed the cloned SGA gene in S. diastaticus YIY345. In order to compare the biochemical properties of the extracellular glucoamylase and the SGA, the SGA was purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sephadex A-50, CM-Sephadex C-50 and Sephadex G-200 chromatography. The molecular weight of the intact SGA was estimated to be about 130 kDa by gel filtration chromatography with high performance liquid chromatography (HPLC) column. Sodium dedecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed it was composed of two heterogeneous subunits, 63 kDa and 68 kDa. The deglycosylation of the SGA generated a new 59 kDa band on the SDS-PAGE analysis, indicating that two subunits are glycosylated but the extent of glycosylation is different between them. The optimum pH and temperature of the SGA were 5.5 and $45^{\circ}C$, respectively, whereas those for the extracellular glucoamylase were 5.0 and $50^{\circ}C$. The SGA were more sensitive to heat and SDS than the extracellular glucoamylase.

Application of Glucose Oxidase for the Rapid Screening of Glucoamylase-producing Fungus (진균류(眞菌類)의 Glucoamylase 활성(活性)의 검색법(檢索法)에 대한 연구)

  • Moon, In-Kyung;Lee, Hyung-Hoan;Kim, Jong-Hyup
    • The Korean Journal of Mycology
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 1984
  • Aspergillus awamori which produces glucoamylase was cultivated in the starch-Czapek-­Dox's medium in which sucrose was depleted. A rapid method for identification and assay of glucoamylase produced by the A. awamori in the culture was established by the use of the glucose oxidase. The levels of glucose derived from the breakdown of the starch medium were assayed by using glucose oxidase, which was proved to be effective in the screening of glucoamylase-producing fungi in terms of rapid and simple determination. After the cellulose acetate electrophoresis of the precipita ted culture broth, the glucoamylase band in the gel was contacted with 2% starch solution with glucose oxidase, and then color reaction was occurred. Also this method could be effective to identify rapidly the fungal glucoamylase.

  • PDF

Purification of Glucoamylase Produced by Rhizopus oryzae (Rhizopus oryzae가 생산(生産)하는 Glucoamylase의 정제(精製))

  • Hou, Won-Nyong;Chung, Man-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.322-328
    • /
    • 1984
  • These experiments were conducted to purify the glucoamylase produced by Rhizopus oryzae. Two forms of glucoamylase (GI and GII) from Phizopus oryzae were purified by $(NH_2)_2SO_4$ fractionation, acetone fractionation and successive column chromatography on DEAE-cellulose and CM-cellulose. The specific activities of GI and GII toward soluble starch were 157.6 U/㎎. protein (37.5 fold of crude extract), and 164.7 U/㎎. protein (39.2 fold of curde extract), respectively, and the yields of them were 4.3% and 3.8%, respectively. The two purified enzymes have shown a single band by polyacrylamide disc gel electrophoresis and SDS-polyacrylamide gel electrophoresis. The protein bands of their electrophoresis gel were revealed to have glucoamylase activity by iodine staining and were proved to be glycoprotein by periodic acid Schiff's staining.

  • PDF

A study on strain improvement by protoplast fusion between amylase secreting yeast and alcohol fermenting yeast - IV. Alcohol and pullulanase productivities of fusant between S. diastaticus and C. tropicalis - (Amylase분비효모와 alcohol 발효효모의 세포융합에 의한 균주의 개발 - 제4보. S. diastaticus와 C. tropicalis 간의 융합체의 pullulanase생성 및 alcohol발효 -)

  • 서정훈;김영호;홍순덕;권택규
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.365-369
    • /
    • 1986
  • The activity of glucoamylase and pullulanase, properties of glucoamylase and ethanol productivities of fusants were studied. Glucoamylase and pullulanase activity of fusants were higher than parents. The optimal pH and temperature of glucoamylase of fusants were very similar to the those produced by S. diastaticus. In alcohol fermentation. fermenting ability and fermentation rate of fusants were higher and faster than either of its parental strain. The maximum of alcohol yield in 15% of liquefied potato starch was 7.8% (v/v)

  • PDF

Efficient and Cost-Reduced Glucoamylase Fed-Batch Production with Alternative Carbon Sources

  • Luo, Hongzhen;Liu, Han;He, Zhenni;Zhou, Cong;Shi, Zhongping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.185-195
    • /
    • 2015
  • Glucoamylase is an important industrial enzyme. Glucoamylase production by industrial Aspergillus niger strain featured with two major problems: (i) empirical substrate feeding methods deteriorating the fermentation performance; and (ii) the high raw materials cost limiting the economics of the glucoamylase product with delegated specification. In this study, we first proposed a novel three-stage varied-rate substrate feeding strategy for efficient glucoamylase production in a 5 L bioreactor using the standard feeding medium, by comparing the changing patterns of the important physiological parameters such as DO, OUR, RQ, etc., when using different substrate feeding strategies. With this strategy, the glucoamylase activity and productivity reached higher levels of 11,000 U/ml and 84.6 U/ml/h, respectively. The performance enhancement in this case was beneficial from the following results: DO and OUR could be controlled at the higher levels (30%, 43.83 mmol/l/h), while RQ was maintained at a stable/lower level of 0.60 simultaneously throughout the fed-batch phase. Based on this three-stage varied-rate substrate feeding strategy, we further evaluated the economics of using alternative carbon sources, attempting to reduce the raw materials cost. The results revealed that cornstarch hydrolysate could be considered as the best carbon source to replace the standard and expensive feeding medium. In this case, the production cost of the glucoamylase with delegated specification (5,000 U/ml) could be saved by more than 61% while the product quality be ensured simultaneously. The proposed strategy showed application potential in improving the economics of industrial glucoamylase production.

Effects of Inducible Substrates on the Co-production of Glucoamylase and Exopolygalacturonase from Cryptococcus laurentii Y-23 (Cryptococcus laurentii Y-23의 glucoamylase와 exopolygalacturonase의 동시발효에 미치는 유도기질의 영향)

  • Kim, Chang-Hwa;Paik, Sang-Kyoo;Yun, Hye-Sun;Jin, Ing-Nyol;Yu, Choon-Bal
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.875-880
    • /
    • 2000
  • The production of glucoamylase and exopolygalacturonase from Cryptococcus laurentii Y-23 were investigated with the inducible substrates and mineral salts. Soluble starch induced only glucoamylase wherease pectin induced exopolygalacturonase as well as glucoamylase, and glucose did not induce glucoamylase whereas pectic acid induced a little amount of exopolygalacturonase. At the productions of two enzymes by inducible substrates for the 5 day-cultivation, the yeasts started log phase around 12 hours and mostly reached stationary phase around 36 hours. The best productivity of glucoamylase was observed with addition of soluble starch in the cultivation for 72 to 86 hours, and the high productivity of exopolygalacturonase was done by addition of both pectin and soluble starch in the cultivation for more than 72 hours. Without ammonium sulfate in the medium, however, cultural pH was so increased gradually that production of both enzymes were decreased and delayed as well. $Mn^{2+}$ increased both productivities of glucoamylase and exopolygalacturonase with 21% and 18%, respectively.

  • PDF