• Title/Summary/Keyword: a-SiC:H

Search Result 2,171, Processing Time 0.034 seconds

Ni/Si/Ni Ohmic contacts to n-type 4H-SiC (Ni/Si/Ni n형 4H-SiC의 오옴성 접합)

  • Lee, J.H.;Yang, S.J.;Noh, I.H.;Kim, C.K.;Cho, N.I.;Jung, K.H.;Kim, E.D.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.197-200
    • /
    • 2001
  • In this letter, we report on the investigation of Ni/Si/Ni Ohmic contacts to n-type 4H-SiC. Ohmic contacts have been formed by a vacuum annealing and $N_2$ gas ambient annealing method at $950^{\circ}C$ for 10 min. The specific contact resistivity ( $\rho_{c}$ ), sheet resistance($R_s$), contact resistance($R_c$), transfer length($L_T$) were calculated from resistance($R_T$) versus contact spacing(d) measurements obtained from 10 TLM(transmission line method) structures. The resulting average values of vacuum annealing sample were $\rho_{c}=3.8{\times}10^{-5}\Omega cm^{3}$, $R_{c}=4.9{\Omega}$, $R_{T}=9.8{\Omega}$ and $L_{T}=15.5{\mu}m$, resulting average values of another sample were $\rho_{c}=2.29{\times}10^{-4}\Omega cm^{3}$, $R_{c}=12.9{\Omega}$ and $R_{T}=25.8{\Omega}$. The physical properties of contacts were examined using X-Ray Diffraction and Auger analysis, there was a uniform intermixing of the Si and Ni, migration of Ni into the SiC.

  • PDF

Effect of Chemical Vapor Deposition Condition on the Growth of SiC Thin Films (화학기상증착조건이 SiC 박막의 성장에 미치는 영향)

  • Bang, Wook;Kim, Hyeong-Joon
    • Korean Journal of Crystallography
    • /
    • v.3 no.2
    • /
    • pp.98-110
    • /
    • 1992
  • B-SiC thin films were fabricated on Si(100) substrate under 1 atom by fVD. The effects of deposition conditions on the growth and the properties especially crystallinity and prefer ential alignment of these thin films were investigated. SiH4 and CH4 were used as source gases and H2 as Carrier gas. Th9 growth Of B-SiC thin films with changing parameters such as the growth temperature, the ratio of source gases (SiH4/CH4 ) and the total amount of source gases. The grown thin films were characterized by using SEM, a -step, XRD, Raman Spectro- scopy and TEM. Chemical conversion process improved the quality of thin films due to the formation of SiC buffer layer. The crystallinity of SiC thin films was improved when the growth temperature was higher than l150t and the amount of CH4 exceeded that of SiH4. The better crystallinity, the better alignment to the crystalline direction of substates. TEM analyses of the good quality thin films showed that the grain size was bigger at the surface than at the interface and the defect density is not depend on the ratio of the source gases.

  • PDF

a-C:H 박막의 가열에 따른 스핀밀도 변화

  • 윤원주;조영옥;노옥환;이정근
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.91-91
    • /
    • 2000
  • a-C:H 혹은 a-SiC:H 박막은 광전소자 및 태양전지 등의 개발에 있어서 중요한 물질이다. 우리는 a-C:H 및 a-SiC:H 박막을 PECVD (plasma-enhanced chemical vapor deposition) 방법으로 증착시키고, 박막의 가열에 따른 스핀밀도의 변화를 ESR (electron spin resonance) 측정을 통하여 조사하였다. PECVD 증착가스는 Ch4, SiH4 가스를 사용하였고, 기판은 Corning 1737glass를 사용하였으며, 기판 온도는 300-40$0^{\circ}C$, 증착 압력은 0.1-0.3 Torr, r.f. 전력은 3-36W 사이에서 변화되었다. ESR 측정은 상온 X-band 영역에서 수행되었고, modulation amplitude는 2.5G, modulation frequency는 100kHz 이었다. a-C:H 혹은 a-SiC:H 박막은 진공상태의 reactor, 혹은 공기중의 furnace 안에서 300-50$0^{\circ}C$ 영역에서 3-8시간 정도 가열되거나, 혹은 상온에서 약 50$0^{\circ}C$ 정도까지 단계적으로 가열되었다. 증착된 a-C:H 박막의 초기 구조는 Raman 측정으로부터 polymer-like Carbon으로 추정되었으며, 300-35$0^{\circ}C$ 가열시 초기 1시간 정도 사이에는 스핀밀도가 증가되었으나, 그 후 8시간 정도까지의 가열의 경우에도 대체로 동일하게 나타났다. 또한 상온으로부터 약 50$0^{\circ}C$까지 단계적으로 온도를 높여주며, 각 단계마다 1시간씩 가열했을 때도 30$0^{\circ}C$ 정도까지는 스핀밀도가 증가하다가 더 높은 온도로 가면서 다시 스핀밀도가 감소함을 볼 수 있었다. 이러한 스핀밀도의 초기 증가 및 감소를 일으키는 메카니즘에 대해서 논의해 볼 것이다.

  • PDF

Interfacial Reactions between W Thin Film and 6H-SiC during Heat Treatments (열처리에 따른 W 박막과 6H-SiC의 계면반응에 관한 연구)

  • Shin, Yang-Soo;Lee, Byung-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.545-550
    • /
    • 1998
  • Phase reactions at W /6H- SiC interfaces during heat treatments were investigated by X- Ray diffractometer and transmission electron microscopy. No detectable reactions were found after annealing at up to 900$0^{\circ}C$ whereas formation of $W_5Si_3$ and $W_2C$$0^{\circ}C$ This result is consistent with a previous report that the reactions between 3C-SiC and W occurs at llOOoe, and suggests that $W_5Si_3$ and $W_2C$ are the stable phases in this temperature range.

  • PDF

A study on CO gas sensing Characteristics of Pt-SiC $SnO_2$-pt-SiC Schottky Diodes (Pt 및 Pt-$SnO_2$를 전극으로 하는 SiC 쇼트키 다이오드의 CO 가스 감응 특성)

  • Kim, C.K.;Noh, I.H.;Yang, S.J.;Lee, J.H.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.805-808
    • /
    • 2002
  • A carbon monoxide gas sensor utilizing Pt-SiC, Pt-SnO2-SiC diode structure was fabricated. Since the operating temperature for silicon devices in limited to 200oC, sensor which employ the silicon substrate can not at high temperature. In this study, CO gas sensor operating at high temperature which utilize SiC semiconductor as a substrate was developed. Since the SiC is the semiconductor with wide band gap. the sensor at above $700^{\circ}C$. Carbon monoxide-sensing behavior of Pt-SiC, Pt-SnO2-SiC diode is systematically compared and analyzed as a function of carbon monoxide concentration and temperature by I-V and ${\Delta}$I-t method under steady-state and transient conditions.

  • PDF

4H-SiC(0001) Epilayer Growth and Electrical Property of Schottky Diode (4H-SiC(0001) Epilayer 성장 및 쇼트키 다이오드의 전기적 특성)

  • Park, Chi-Kwon;Lee, Won-Jae;Nishino Shigehiro;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.344-349
    • /
    • 2006
  • A sublimation epitaxial method, referred to as the Closed Space Technique (CST) was adopted to produce thick SiC epitaxial layers for power device applications. We aimed to systematically investigate the dependence of SiC epilayer quality and growth rate during the sublimation growth using the CST method on various process parameters such as the growth temperature and working pressure. The etched surface of a SiC epitaxial layer grown with low growth rate $(30{\mu}m/h)$ exhibited low etch pit density (EPD) of ${\sim}2000/cm^2$ and a low micropipe density (MPD) of $2/cm^2$. The etched surface of a SiC epitaxial layer grown with high growth rate (above $100{\mu}m/h$) contained a high EPD of ${\sim}3500/cm^2$ and a high MPD of ${\sim}500/cm^2$, which indicates that high growth rate aids the formation of dislocations and micropipes in the epitaxial layer. We also investigated the Schottky barrier diode (SBD) characteristics including a carrier density and depletion layer for Ni/SiC structure and finally proposed a MESFET device fabricated by using selective epilayer process.

Study on the influence of i/p interfacial properties on the cell performance of flexible nip microcrystalline silicon thin film solar cells (i/p 계면 특성에 따른 nip 플렉서블 미세결정질 실리콘 박막 태양전지의 특성 연구)

  • Jang, Eunseok;Baek, Sanghun;Jang, Byung Yeol;Lee, Jeong Chul;Park, Sang Hyun;Rhee, Young Woo;Cho, Jun-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.128.2-128.2
    • /
    • 2011
  • 스테인레스 스틸 유연기판 위에 플라즈마 화학기상 증착법 (plasma enhanced chemical vapor deposition)을 이용하여 nip 구조의 미세결정질 실리콘 박막 태양전지 (microcrystalline silicon thin film solar cell)를 제조하고 i ${\mu}c$-Si:H광 흡수층과 p ${\mu}c$-Si:H 사이에 i a-Si:H 버퍼 층을 삽입하여 i/p 계면특성을 개선하고 이에 따른 태양전지 성능특성 변화를 조사하였다. ${\mu}c$-Si:H 박막으로 이루어진 i/p 계면에서의 구조적, 전기적 결함은 태양전지 내에서 생성된 캐리어의 재결합과 shunt resistance 감소를 초래하여 개방전압 (open circuit voltage) 및 곡선 인자 (fill factor)를 감소시키는 것으로 알려졌다. 제조된 미세결정질 실리콘 박막 태양전지는 SUS/Ag/ZnO:Al/n ${\mu}c$-Si:H/i ${\mu}c$-Si:H/p ${\mu}c$-Si:H 구조로 제작되었으며 i/p 계면 사이의 i a-Si;H 버퍼층 두께를 변화시키고 이에 따른 태양전지의 특성을 조사하였다. 태양전지의 구조적, 전기적 특성 변화는 Scanning Electron Microscope (SEM), UV-visible-nIR spectrometry, Photo IV와 Dark IV를 통하여 조사하였다.

  • PDF

Characterization of SiC-SiC Whisker Matrix Retaining Electrolyte in Phosphoric Acid Fuel Cell (인산형 연료전지용 SiC-SiC Whisker 전해질 매트릭스의 특성)

  • 윤기현;이현임;이근행;김창수
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.587-592
    • /
    • 1992
  • Sheets of SiC-SiC whisker maxed matrix were prepared from the mixed slurry of SiC whisker and SiC matrix by the rolling method. With the increase of SiC whisker, the pore size, the porosity and the phosphoric acid absorbency of the matrix were increased, while the bubble pressure was decreased. The activation energy for the transfer of H+ ion was decreased with the increase of mixing ratio of SiC whisker to the SiC matrix from the measurement of hydrogen ion conductivity. The activation energy was evaluated as 0.25 eV when the mixing ratio of SiC whisker to the SiC matrix was 1 : 2 and the activation energy was 0.16 eV for the 2 : 1 matrix. It means that SiC whisker matrix contributes to attain a better microstructure for the diffusion of hydrogen ion. From the measurement of single cell performance of matrix with various mixing ratio, it is concluded that if SiC-SiC whisker maxed matrix has a sufficient bubble pressure to prevent the crossover of H2 gas, the current density of a fuel cell is increased with the increase of acid absorbency of the matrix. Current density was improved from 140 mA/$\textrm{cm}^2$ for 0.25 mm thickness of matrix to 170 mA/$\textrm{cm}^2$ for the 0.20 mm one at 700 mV.

  • PDF

A Study of Properties of 3C-SiC Films deposited by LPCVD with Different Films Thickness

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.101-104
    • /
    • 2008
  • The electrical properties and microstructure of nitrogen-doped poly 3C-SiC films were studied according to different thickness. Poly 3C-SiC films were deposited by LPCVD(low pressure chemical vapor deposition) at $900^{\circ}C$ and 4 Torr using $SiH_2Cl_2$ (100 %, 35 sccm) and $C_2H_2$ (5 % in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5 % in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the 3C-SiC films with $1,530{\AA}$ of thickness was $32.7{\Omega}-cm$ and decreased to $0.0129{\Omega}-cm$ at $16,963{\AA}$. In XRD spectra, 3C-SiC is so highly oriented along the (1 1 1) plane at $2{\theta}=35.7^{\circ}$ that other peaks corresponding to SiC orientations are not presented. The measurement of resistance variations according to different thickness were carried out in the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of resistance variation decreases with increasing the films thickness, the linearity of resistance variation improved.

Visible Photoluminescence from Hydrogenated Amorphous Silicon Substrates by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition (ECR-PECVD로 증착한 a-Si : H/Si으로 부터의 가시 PHotoluminescence)

  • Shim, Cheon-Man;Jung, Dong-Geun;Lee, Ju-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.359-361
    • /
    • 1998
  • Visible photoluminescence(PU was observed from hydrogenated amorphous silicon deposited on silicon(a-Si : H/Si) using electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR- PECVD) with silane ($SiH_{4}$) gas as the reactant source. The PL spectra from a-Si : H/Si were very similar to those from porous silicon. Hydrogen contents of samples annealed under oxygen atmosphere for 2minutes at $500^{\circ}C$ by rapid thermal annealing were reduced to 1~2%, and the samples did not show visible PL, indicating that hydrogen has a very important role in the PL process of a- Si : H/Si. As the thickness of deposited a-Si : H film increased, PL intensity decreased. The visi¬ble PL from a-Si: H deposited on Si by ECR-PECVD with $SiH_{4}$ . is suggested to be from silicon hydrides formed at the interface between the Si substrate and the deposited a-Si : H film during the deposition.

  • PDF