• Title/Summary/Keyword: a variable reference model

Search Result 159, Processing Time 0.031 seconds

A Design of Discrete-Time Model Reference Adaptive Control System by Direct Method (직접법에 의한 이산시간 기준모델 적응제어 시스템 설계에 관한 연구)

  • 김성덕
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.5
    • /
    • pp.258-265
    • /
    • 1985
  • A design method for a single-input single-output discrete time model reference adaptive system is described in this paper. By using the state-variable filters into inputs and outputs in reference model and unknown system, a simple adaptive structure which use all accessible signals can be constructed. Some papers for the adaptive shstem is which thw relative degree of unknown system have one or two have been reported, but the resulting adaptive system are intricate in structures and the design theories for the model reference adaptive system are not generalized. In this paper, for having two or more relative degrees, it has been verified that an adaptive scheme can be obtained by introducing a simple linear filter.

  • PDF

Design of Reconfigurable Flight Controller Using Discrete Model Reference Adaptive Scheme

  • Hyung, Seung-Yong;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • In this paper, an adaptive control algorithm using system identification is proposed for an aircraft fault tolerant control system. A discrete state-space system is reformulated to be the ARX model which has the advantage in handing variable structure systems. Discrete model reference adaptive control is used to make the output of fault system follow the output of reference model. To validate the performance of the proposed control scheme, numerical simulations are performed for the high performance aircraft with control surface damage.

Control of throttle actuator system based on time delay control (시간지연제어에 기초한 스로틀액츄에이터 시스템의 제어)

  • Song, Jae-Bok;Byeon, Kyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2081-2089
    • /
    • 1997
  • Accurate positioning of the throttle valve of a gasoline engine is required to implement various systems such as traction control system(TCS), cruise control system and drive-by-wire system. In this research, position control system has been developed for the throttle actuator system that uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive the DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Also, time delay control(TDC) law has been used as a basic control algorithm. A method of varying the reference model of the TDC according to the size of change in target throttle angle is proposed here. The simulation and experimental results show that both overshoot prevention and fast response are achieved by the TDC technique with this variable reference model.

Robust design scheme of VS-MRC to time-varying plant

  • Tanaka, Kanya;Shibata, Satoru;Shimizu, Akira;Sakamoto, Masaru;Uchikado, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.56-59
    • /
    • 1995
  • In this paper, we propose a new rubust design scheme of a variable structure type model reference control (VS-MRC) which can be applied to linear time-varing plants. Our idea is started from the hypothesis that the plant consists of two parts, i.e., one has time-invariant parameters and the other has time-varying parameters. We consider the former the nominal part of the plant and the latter a kind of disturbance to the nominal one. In this design scheme, the ordinary VS-MRC is adopted to the nominal part and the signum function is introduced to eliminate the influence of the disturbance.

  • PDF

Speed Control of Induction Motor Using Improved Auxiliary Variable in Model Reference Adaptive System (기준모델 적응방식에 개선된 보조변수를 사용한 유도전동기 속도제어)

  • Seo, Young-Soo;Baek, Dong-Hyun;Song, Ho-Bin;Lee, Bum-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2008-2011
    • /
    • 1998
  • When the vector control, which does not need a speed signal from a mechanical speed sensor, it is possible to reduce the cost of the control equipment and to improve the control performance in many industrial application. This paper describes a rotor speed identification method of induction motor based on the theory of Model Reference Adaptive System(MRAS). The identifier execute the rotor speed identification so that the vector control of the induc-tion motor may be achieved. The improved auxiliary variable are introduce to perform accurate rotor speed identification. Simulation and experimental result show the validity of the proposed control method.

  • PDF

Energy-Efficient Reference Walking Trajectory Generation Using Allowable ZMP (Zero Moment Point) Region for Biped Robots (2족 보행 로봇을 위한 허용 ZMP (Zero Moment Point) 영역의 활용을 통한 에너지 효율적인 기준 보행 궤적 생성)

  • Shin, Hyeok-Ki;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1029-1036
    • /
    • 2011
  • An energy-efficient reference walking trajectory generation algorithm is suggested utilizing allowable ZMP (Zero-Moment-Point) region, which maxmizes the energy efficiency for cyclic gaits, based on three-dimensional LIPM (Linear Inverted Pendulum Model) for biped robots. As observed in natural human walking, variable ZMP manipulation is suggested, in which ZMP moves within the allowable region to reduce the joint stress (i.e., rapid acceleration and deceleration of body), and hence to reduce the consumed energy. In addition, opimization of footstep planning is conducted to decide the optimal step-length and body height for a given forward mean velocity to minimize a suitable energy performance - amount of energy required to carry a unit weight a unit distance. In this planning, in order to ensure physically realizable walking trajectory, we also considered geometrical constraints, ZMP stability condition, friction constraint, and yawing moment constraint. Simulations are performed with a 12-DOF 3D biped robot model to verify the effectiveness of the proposed method.

Reference Feature Based Cell Decomposition and Form Feature Recognition (기준 특징형상에 기반한 셀 분해 및 특징형상 인식에 관한 연구)

  • Kim, Jae-Hyun;Park, Jung-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.245-254
    • /
    • 2007
  • This research proposed feature extraction algorithms as an input of STEP Ap214 data, and feature parameterization process to simplify further design change and maintenance. The procedure starts with suppression of blend faces of an input solid model to generate its simplified model, where both constant and variable-radius blends are considered. Most existing cell decomposition algorithms utilize concave edges, and they usually require complex procedures and computing time in recomposing the cells. The proposed algorithm using reference features, however, was found to be more efficient through testing with a few sample cases. In addition, the algorithm is able to recognize depression features, which is another strong point compared to the existing cell decomposition approaches. The proposed algorithm was implemented on a commercial CAD system and tested with selected industrial product models, along with parameterization of recognized features for further design change.

Model Reference Adaptive Pole-Placement Controller of Nonminimum Phase systems (비최소 위상 시스템에 대한 기준 모델 적응 폴-플레이스먼트 제어기)

  • 김종환;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.89-96
    • /
    • 1985
  • A pole-placement control of discrete, deterministic, single-input single-output nonmini-mum phase systems is considered using a model reference type approach. The proposed pole-placement controller is designed in the parameter form to make the transfer function of the controller equal to that of the reference model with only single variable polynomial S(q-1). The proposed adaptive pole-placement controllr is designed with the true system para-meters by applying the adaptation method to the proposed pole-placement controller.

  • PDF

Generation of Unit Shape Layer on CAD/CAM System for VLM-ST (VLM-ST용 CAD/CAM 시스템에서 단위 형상층 생성 방법 및 적용예)

  • 이상호;안동규;최홍석;양동열;문영복;채희창
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • Most Rapid Prototyping (RP) processes adopt a solid Computer Aided Design (CAD) model, which will be sliced into thin layers of constant thickness in the building direction. Each cross-sectional layer is successively deposited and, simultaneously, bonded onto the previous layer; and eventually the stacked layers from a physical part of the model. A new RP process, the transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), has been developed to reduce building time and to improve the surface finish of parts with the thick layers and a sloping surface. This paper describes the generation of Unit Shape Layer (USL), the cutting path data of the linen. hotwire cutter for the VLM-ST process. USL is a three-dimensional layer with a thickness of more than 1 mm and a side slope, and it is the basic unit of cutting and building in the VLM-ST process. USL includes data such as layer thickness, positional coordinates, side angles of each layer, hotwire cutting speed, the heat input to the hotwire, and reference shape. The procedure of generating USL is as follows: (1)Generation of the mid-slice from the CAD model, (2)Conversion of the mid-slice into a simply connected domain, (3)Generation to the reference shape for the mid-slice, (4)Calculation of the rotation angle of the hotwire of the cutting system.

Decoupling Control Design for Variable Speed Refrigeration System of a Ship

  • Hua, Li;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.808-815
    • /
    • 2006
  • In this paper, we suggest decoupling control method based on general PI control law to control variable speed refrigeration system of the ship effectively. In the variable speed refrigeration system, the capacity and the superheat are controlled by inverters and electronic expansion valves respectively for saving energy and improving cost performance. Thus, we propose decoupling model to eliminate the interfering loop between capacity and superheat at first. Next, we design PI controller to control capacity and superheat independently and simultaneously. Finally the control performance was investigated through some experiments. The experimental results show that the PI control design can obtain good control performance under the adjustable control reference and thermal load variation.