• Title/Summary/Keyword: a tracking object

Search Result 1,271, Processing Time 0.04 seconds

Learning Methods for Effective Object Tracking in 3D Storytelling Augmented Reality (3D 스토리텔링 증강현실에서 효과적인 객체 추적을 위한 학습 방법)

  • Choi, Dae han;Han, Woo ri;Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.46-50
    • /
    • 2016
  • Recently, Depending on expectancy effect and ripple effect of augmented reality, the convergence between augmented reality and culture & arts are being actively conducted. This paper proposes a learning method for effective object tracking in 3D storytelling augmented reality in cultural properties. The proposed system is based on marker-less tracking, and there are four modules that are recognition, tracking, detecting and learning module. Recognition module is composed of SURF and LSH, and then this module generates standard object information. Tracking module tracks an object using object tracking based on reliability. This information is stored in Learning module along with learned time information. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. Also, it proposes a method for robustly implementing a 3D storytelling augmented reality in cultural properties in the future.

Combining an Edge-Based Method and a Direct Method for Robust 3D Object Tracking

  • Lomaliza, Jean-Pierre;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.167-177
    • /
    • 2021
  • In the field of augmented reality, edge-based methods have been popularly used in tracking textureless 3D objects. However, edge-based methods are inherently vulnerable to cluttered backgrounds. Another way to track textureless or poorly-textured 3D objects is to directly align image intensity of 3D object between consecutive frames. Although the direct methods enable more reliable and stable tracking compared to using local features such as edges, they are more sensitive to occlusion and less accurate than the edge-based methods. Therefore, we propose a method that combines an edge-based method and a direct method to leverage the advantages from each approach. Experimental results show that the proposed method is much robust to both fast camera (or object) movements and occlusion while still working in real time at a frame rate of 18 Hz. The tracking success rate and tracking accuracy were improved by up to 84% and 1.4 pixels, respectively, compared to using the edge-based method or the direct method solely.

Detection using Optical Flow and EMD Algorithm and Tracking using Kalman Filter of Moving Objects (이동물체들의 Optical flow와 EMD 알고리즘을 이용한 식별과 Kalman 필터를 이용한 추적)

  • Lee, Jung Sik;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1047-1055
    • /
    • 2015
  • We proposes a method for improving the identification and tracking of the moving objects in intelligent video surveillance system. The proposed method consists of 3 parts: object detection, object recognition, and object tracking. First of all, we use a GMM(Gaussian Mixture Model) to eliminate the background, and extract the moving object. Next, we propose a labeling technique forrecognition of the moving object. and the method for identifying the recognized object by using the optical flow and EMD algorithm. Lastly, we proposes method to track the location of the identified moving object regions by using location information of moving objects and Kalman filter. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF

Handled in real-time tracking of moving object occlusion (가림현상에 대처한 실시간 이동 물체 추적)

  • Kim, Hag-Hee;Yun, Han-Kyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.3
    • /
    • pp.158-166
    • /
    • 2011
  • Generally, moving object tracking used Lucas-Kanade feature tracking method which is strong in movement, rotation and size. But this method is very weak of occlusion by background or another object and so on. In this case, this method tracks backgrounds or another objects instead a moving object, or a tracking is finished. In order to solve this problem, we proposes Lucas-Kanade feature tracking method which introduce a destimation function and prediction function.

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

Tracking of Single Moving Object based on Motion Estimation (움직임 추정에 기반한 단일 이동객체 추적)

  • Oh Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.349-354
    • /
    • 2005
  • The study on computer vision is aimed on creating a system to substitute the ability of human visual sensor. Especially, moving object tracking system is becoming an important area of study. In this study, we have proposed the tracking system of single moving object based on motion estimation. The tracking system performed motion estimation using differential image, and then tracked the moving object by controlling Pan/Tilt device of camera. Proposed tracking system is devided into image acquisition and preprocessing phase, motion estimation phase and object tracking phase. As a result of experiment, motion of moving object can be estimated. The result of tracking, object was not lost and tracked correctly.

  • PDF

Object Tracking with Radical Change of Color Distribution Using EM algorithm

  • Whoang In-Teck;Choi Kwang-Nam
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.388-390
    • /
    • 2006
  • This paper presents an object tracking with radical change of color. Conventional Mean Shift do not provide appropriate result when major color distribution disappear. Our tracking approach is based on Mean Shift as basic tracking method. However we propose tracking algorithm that shows good results for an object of radical variation. The key idea is iterative update previous color information of an object that shows different color by using EM algorithm. As experiment results, we show that our proposed algorithm is an effective approach in tracking for a real object include an object having radical change of color.

  • PDF

An Aerial Robot System Tracking a Moving Object

  • Ogata, Takehito;Tan, Joo Kooi;Ishikawa, Seiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1917-1920
    • /
    • 2003
  • Automatic tracking of a moving object such as a person is a demanding technique especially in surveillance. This paper describes an experimental system for tracking a moving object on the ground by using a visually controlled aerial robot. A blimp is used as the aerial robot in the proposed system because of its locality in motion and its silent nature. The developed blimp is equipped with a camera for taking downward images and four rotors for controlling the progression. Once a camera takes an image of a specified moving object on the ground, the blimp is controlled so that it follows the object by the employment of the visual information. Experimental results show satisfactory performance of the system. Advantages of the present system include that images from the air often enable us to avoid occlusion among objects on the ground and that blimp’s progression is much less restricted in the air than, e.g., a mobile robot running on the ground.

  • PDF

Mean-Shift Object Tracking with Discrete and Real AdaBoost Techniques

  • Baskoro, Hendro;Kim, Jun-Seong;Kim, Chang-Su
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.282-291
    • /
    • 2009
  • An online mean-shift object tracking algorithm, which consists of a learning stage and an estimation stage, is proposed in this work. The learning stage selects the features for tracking, and the estimation stage composes a likelihood image and applies the mean shift algorithm to it to track an object. The tracking performance depends on the quality of the likelihood image. We propose two schemes to generate and integrate likelihood images: one based on the discrete AdaBoost (DAB) and the other based on the real AdaBoost (RAB). The DAB scheme uses tuned feature values, whereas RAB estimates class probabilities, to select the features and generate the likelihood images. Experiment results show that the proposed algorithm provides more accurate and reliable tracking results than the conventional mean shift tracking algorithms.

  • PDF