• 제목/요약/키워드: a spike detection

검색결과 47건 처리시간 0.026초

근피로도 측정을 위한 중간 주파수와 Spike 파라미터의 신뢰도 비교 및 향상된 Spike 검출 알고리듬에 관한 연구 (A Study on the Reliability Comparison of Median Frequency and Spike Parameter and the Improved Spike Detection Algorithm for the Muscle Fatigue Measurement)

  • 이성주;홍기룡;이태우;이상훈;김성환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권5호
    • /
    • pp.380-388
    • /
    • 2004
  • This study proposed an improved spike detection algorithm which automatically detects suitable spike threshold on the amplitude of surface electromyography(SEMG) signal during isometric contraction. The EMG data from the low back muscles was obtained in six channels and the proposed signal processing algorithm is compared with the median frequency and Gabriel's spike parameter. As a result, the reliability of spike parameter was inferior to the median frequency. This fact indicates that a spike parameter is inadequate for analysis of multi-channel EMG signal. Because of uncertainty of fixed spike threshold, the improved spike detection algorithm was proposed. It automatically detects suitable spike threshold depending on the amplitude of the EMG signal, and the proposed algorithm was able to detect optimal threshold based on mCFAR(modified Constant False Alarm Rate) in the every EMG channel. In conclusion, from the reliability points of view, neither median frequency nor existing spike detection algorithm was superior to the proposed method.

표면 운동단위 활동전위 스파이크 검출을 위한 최적의 디지털 저역통과 미분기 선정 방법 (A Selection Method of Optimal Digital Low-pass Differentiator for Spike Detection of Surface Motor Unit Action Potential)

  • 이진;김성환
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1951-1958
    • /
    • 2011
  • The objective of this study is to analyze the performance of digital low-pass differentiators(LPD) and then to provide a method to select effective LPD filter, for detecting spikes of surface motor unit action potentials(MUAP). The successful spike detection of MUAPs is a first important step for EMG signal decomposition. The performances of simple and weighted LPD(SLPD and WLPD) filters are analyzed based on different filter lengths and varying MUAPs from simulated surface EMG signals. The SNR improving coefficient and effective MUAP duration range from the analysis results can be used to select proper LPD filters under the varying conditions of surface EMG.

ANALYSIS OF HUMAN DECISION MAKING PROCESS BASED ON CONDITIONAL PROBABLILTY

  • Nakamura, Masatoshi;Goto, Satoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.783-786
    • /
    • 1997
  • Automatic realization of on-off human decision making was derived based on a conditional probability. Following the proposed procedure, problems of insulator washing timing in power substations and spike detection on EEG(electroencephalogram) records were appropriately solved.

  • PDF

Design of a CT Saturation Detection Technique with the Countermeasure for a Spike Signal

  • Kang, Yong-Cheol;Yun, Jae-Sung
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권2호
    • /
    • pp.85-92
    • /
    • 2003
  • When a current transformer (CT) is saturated, the wave-shape of the secondary current is distorted and contains points of inflection, which correspond to the start or end of each saturation period. Discontinuity in the first-difference function of the current arises at points of inflection, where the second and third differences convert into pulses that can be used to detect saturation. This paper describes the design and evaluation of a CT saturation detection technique using the third-difference function and includes the countermeasure for a spike signal. Test results clearly demonstrate that the algorithm successfully detects the start and end of each saturation period irrespective of the remanent flux and magnetization inductance in the saturated region. This paper concludes by describing the results of hardware implementation of the algorithm using a DSP.

An efficient method applied to spike pattern detection

  • Duc, Thang Nguyen;Kim, Tae-Seong;Lee, Young-Koo;Lee, Sung-Young
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.558-559
    • /
    • 2007
  • The detection of neural spike activity is a technical challenge that is very important for studying many types of brain function. On temporal recordings of firing events or interspike interval series of neural signal, spike pattern correspond to action will be repeated in the presence of background noise and they need to be detected to develop higher applications. We will introduce new method to find these patterns in raw multitrial data and is tested on surrogate data sets with the main target to get meaningful analysis of electrophysiological data from microelectrode arrays (MEA).

콤퓨터를 이용한 간질환자 뇌파의 극파 자동검출 방법에 관한 연구 (A Study on Computer-Assisted Automatic Spike Detection System in EEG Signal of Epileptic Patients)

  • 박광석;민병구;이충웅
    • 대한전자공학회논문지
    • /
    • 제17권6호
    • /
    • pp.28-32
    • /
    • 1980
  • 병질우자의 뇌파에서 나타나는 비정상적인 극파(spike)를 삼각파형의 모델을 사용하여 자동검출하는 방법을 디지탈시스템으로 구성하였다. 이 방법은 극파가 일정한 시간폭과 큰 기울기와 정상에서 날카로운 특성을 갖는 파형이라는 성질을 이용한 것이다. 본 논문에서는 뇌파를 채집하여 신호처리한 다음 이러한 극파의 특성을 나타내는 모개변수들로부터 극파를 구별하여 판정해내는 프로그램을 구성하였다. 이러한 신호처리 과정과 검출과정을 모두 미니콤퓨터를 이용하여 구성했으며 마이크로프로세서에의 응용을 위한 기본단계라고 할 수 있다.

  • PDF

스파이크 웨이블렛 변환을 이용한 기어 시스템의 건전성 감시 (Condition Monitoring in Gear System Using Spike Wavelet Transform)

  • 이상권;심장선
    • 한국음향학회지
    • /
    • 제20권5호
    • /
    • pp.21-27
    • /
    • 2001
  • 기어 시스템의 충격음과 충격 신호는 대개 기어의 결함과 관련이 있다. 그래서 이러한 충격음과 충격 신호는 기어 시스템의 건전성 감시의 주요 요소로 사용되어진다. 본 연구에서는 이런 충격음과 충격 신호를 효율적으로 추출해 내기 위해 스파이크 웨이블렛 변환을 이용하는 방법을 제안한다. 스파이크 웨이블렛 변환은 기존에 제안된 연속 웨이블렛 변환의 한계점인 임의의 영역에서의 시간-주파수 분해능의 스케일 변수에 대한 선형성을 보완하여 비 선형적으로 이것을 조절할 수 있게 하였다. 이로 인해서 스파이크 웨이블렛 변환은 관심 주파수를 기준으로 연속 웨이블렛 변환보다 고주파 영역에서는 시간 분해능이 향상되고 동시에 저주파 영역에서는 주파수 분해능이 향상되어 기어 결함에 대한 정보 손실 없이 기어의 결함 위치를 보다 명확히 판단할 수 있는 장점을 가진다. 또한 본 연구에서는 상단 절손의 결함을 갖는 기어에 대한 실험을 통해 본 연구에서 제안하는 스파이크 웨이블렛 변환의 유용성을 검증하였다.

  • PDF

학습 가능한 실시간 다단위 신경 신호의 분류에 관한 연구 (Classification of Multi-Unit Neural Action Potential by Template Learning)

  • 김상돌;김경환;김성준
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.99-102
    • /
    • 1997
  • A neural spike sorting technique has been developed that also has the capability of template learning. A system of software has been written that first obtains the templates by learning, and then performs the sorting of the spikes into single units. The spike sorting can be done in real time. The template learning consists of spike detection based on the discrete Haar transform (DHT), feature extraction by clustering of spike amplitude and duration, classification based on rms error, and fabrication of templates. The developed algorithms can be implemented into real time systems using digital signal processors.

  • PDF

마이크로 콤퓨터를 이용한 뇌파 스파이크의 검출에 관한 연구 (A Microcomputer-based EEG Spike Detection System)

  • 김종현;박상희
    • 대한의용생체공학회:의공학회지
    • /
    • 제2권2호
    • /
    • pp.83-88
    • /
    • 1981
  • A method of detecting abnormal spikes occuring in the EEG of subjects suffering from epilepsy is studied. The detection scheme is to take the first derivative of EEG and to determine if it exceed some threshold value. This study is focused on the digital signal processing for detecting abnormal spikes using microcomputer.

  • PDF

웨이브렛과 신경 회로망을 이용한 EEG의 간질 파형 검출 (Detection of epileptiform activities in the EEG using wavelet and neural network)

  • 박현석;이두수;김선일
    • 전자공학회논문지S
    • /
    • 제35S권2호
    • /
    • pp.70-78
    • /
    • 1998
  • Spike detection in long-term EEG monitoring forepilepsy by wavelet transform(WT), artificial neural network(ANN) and the expert system is presented. First, a small set of wavelet coefficients is used to represent the characteristics of a singlechannel epileptic spikes and normal activities. In this stage, two parameters are also extracted from the relation between EEG activities before the spike event and EEG activities with the spike. then, three-layer feed-forward network employing the error back propagation algorithm is trained and tested using parameters obtained from the first stage. Spikes are identified in individual EEG channels by 16 identical neural networks. Finally, 16-channel expert system based on the context information of adjacent channels is introducedto yield more reliable results and reject artifacts. In this study, epileptic spikes and normal activities are selected from 32 patient's EEG in consensus among experts. The result showed that the WT reduced data input size and the preprocessed ANN had more accuracy than that of ANN with the same input size of raw data. Ina clinical test, our expert rule system was capable of rejecting artifacts commonly found in EEG recodings.

  • PDF