• Title/Summary/Keyword: a sparse matrix

Search Result 228, Processing Time 0.031 seconds

POI Recommendation Method Based on Multi-Source Information Fusion Using Deep Learning in Location-Based Social Networks

  • Sun, Liqiang
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.352-368
    • /
    • 2021
  • Sign-in point of interest (POI) are extremely sparse in location-based social networks, hindering recommendation systems from capturing users' deep-level preferences. To solve this problem, we propose a content-aware POI recommendation algorithm based on a convolutional neural network. First, using convolutional neural networks to process comment text information, we model location POI and user latent factors. Subsequently, the objective function is constructed by fusing users' geographical information and obtaining the emotional category information. In addition, the objective function comprises matrix decomposition and maximisation of the probability objective function. Finally, we solve the objective function efficiently. The prediction rate and F1 value on the Instagram-NewYork dataset are 78.32% and 76.37%, respectively, and those on the Instagram-Chicago dataset are 85.16% and 83.29%, respectively. Comparative experiments show that the proposed method can obtain a higher precision rate than several other newer recommended methods.

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.

Electricity Generation from MFCs Using Differently Grown Anode-Attached Bacteria

  • Nam, Joo-Youn;Kim, Hyun-Woo;Lim, Kyeong-Ho;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.71-78
    • /
    • 2010
  • To understand the effects of acclimation schemes on the formation of anode biofilms, different electrical performances are characterized in this study, with the roles of suspended and attached bacteria in single-chamber microbial fuel cells (MFCs). The results show that the generation of current in single-chamber MFCs is significantly affected by the development of a biofilm matrix on the anode surface containing abundant immobilized microorganisms. The long-term operation with suspended microorganisms was demonstrated to form a dense biofilm matrix that was able to reduce the activation loss in MFCs. Also, a Pt-coated anode was not favorable for the initial or long-term bacterial attachment due to its high hydrophobicity (contact angle = $124^{\circ}$), which promotes easy detachment of the biofilm from the anode surface. Maximum power ($655.0\;mW/m^2$) was obtained at a current density of $3,358.8\;mA/m^2$ in the MFCs with longer acclimation periods. It was found that a dense biofilm was able to enhance the charge transfer rates due to the complex development of a biofilm matrix anchoring the electrochemically active microorganisms together on the anode surface. Among the major components of the extracellular polymeric substance, carbohydrates ($85.7\;mg/m^2_{anode}$) and proteins ($81.0\;mg/m^2_{anode}$) in the dense anode biofilm accounted for 17 and 19%, respectively, which are greater than those in the sparse anode biofilm.

Parallel solution of linear systems on the CRAY-2 using multi/micro tasking library (CRAY-2에서 멀티/마이크로 태스킹 라이브러리를 이용한 선형시스템의 병렬해법)

  • Ma, Sang-Back
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2711-2720
    • /
    • 1997
  • Multitasking and microtasking on the CRAY machine provides still another way to improve computational power. Since CRAY-2 has 4 processors we can achieve speedup up to 4 properly designed algorithms. In this paper we present two parallelizations of linear system solution in the CRAY-2 with multitasking and microtasking library. One is the LU decomposition on the dense matrices and the other is the iterative solution of large sparse linear systems with the preconditioner proposed by Radicati di Brozolo. In the first case we realized a speedup of 1.3 with 2 processors for a matrix of dimension 600 with the multitasking and in the second case a speedup of around 3 with 4 processors for a matrix of dimension 600 with the multitasking and in the second case a speedup of around 3 with 4 processors for a matrix of dimension 8192 with the microtasking. In the first case the speedup is limited because of the nonuniform vector lenghts. In the second case the ILU(0) preconditioner with Radicati's technique seem to realize a reasonable high speedup with 4 processors.

  • PDF

Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification (공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘)

  • Hong, Sung-Sam;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Since big-data text mining extracts many features and data, clustering and classification can result in high computational complexity and low reliability of the analysis results. In particular, a term document matrix obtained through text mining represents term-document features, but produces a sparse matrix. We designed an advanced genetic algorithm (GA) to extract features in text mining for detection model. Term frequency inverse document frequency (TF-IDF) is used to reflect the document-term relationships in feature extraction. Through a repetitive process, a predetermined number of features are selected. And, we used the sparsity score to improve the performance of detection model. If a spam mail data set has the high sparsity, detection model have low performance and is difficult to search the optimization detection model. In addition, we find a low sparsity model that have also high TF-IDF score by using s(F) where the numerator in fitness function. We also verified its performance by applying the proposed algorithm to text classification. As a result, we have found that our algorithm shows higher performance (speed and accuracy) in attack mail classification.

An Efficient Ordering Method and Data Structure of the Interior Point Method (Putting Emphasis on the Minimum Deficiency Ordering (내부점기법에 있어서 효율적인 순서화와 자료구조(최소부족순서화를 중심으로))

  • 박순달;김병규;성명기
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.3
    • /
    • pp.63-74
    • /
    • 1996
  • Ordering plays an important role in solving an LP problem with sparse matrix by the interior point method. Since ordering is NP-complete, we try to find an efficient method. The objective of this paper is to present an efficient heuristic ordering method for implementation of the minimum deficiency method. Both the ordering method and the data structure play important roles in implementation. First we define a new heuristic pseudo-deficiency ordering method and a data structure for the method-quotient graph and cliqued storage. Next we show an experimental result in terms of time and nonzero numbers by NETLIB problems.

  • PDF

Efficient calculation method of derivative of traveltime using SWEET algorithm for refraction tomography

  • Choi, Yun-Seok;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.402-409
    • /
    • 2003
  • Inversion of traveltime requires an efficient algorithm for computing the traveltime as well as its $Frech\hat{e}t$ derivative. We compute the traveltime of the head waves using the damped wave solution in the Laplace domain and then present a new algorithm for calculating the $Frech\hat{e}t$ derivative of the head wave traveltimes by exploiting the numerical structure of the finite element method, the modem sparse matrix technology, and SWEET algorithm developed recently. Then, we use a properly regularized steepest descent method to invert the traveltime of the Marmousi-2 model. Through our numerical tests, we will demonstrate that the refraction tomography with large aperture data can be used to construct the initial velocity model for the prestack depth migration.

  • PDF

Comparison of Parallel Preconditioners for Solving Large Sparse Linear Systems on a Massively Parallel Machine (대형이산 행렬 시스템의 초대형병렬컴퓨터에서의 해법을 위한 병렬준비 행렬의 비교)

  • Ma, Sang-Baek
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.4
    • /
    • pp.535-542
    • /
    • 1995
  • In this paper we present two preconditioners for solving large sparse linear systems arising from elliptic partial differential equations on massively parallel machines, such as the CM-5. Most massively parallel machines do heavily rely on the message-passing for the interprocessor communications. but according to the current manufacturing standards the cost of communications is very high compared to that of floating point arithmetic computations. Due to this we need an algorithm which minimizes the amount of interprocessor communication on the massively parallel machines. We will show that Block SOR(Successive Over Relaxation) method coupled with the multi-coloring technique is one of such preconditioner on the massively parallel machines, by conducting experiments in the CM-5. Also, we implemented the ADI(Alternation Direction Implicit) method in the CM-5, which has been conventionally one of the most powerful parallel preconditioner. Our experiment shows that Block SOR method coupled with the multi-coloring technique could yield a speedup with 50% efficiency with the range of number of processors form 16 to 512 for a matrix with dimension 512x512. On the other hand, the ADI method shows a very poor performance.

  • PDF

A Parallel Algorithm for Large DOF Structural Analysis Problems (대규모 자유도 문제의 구조해석을 위한 병렬 알고리즘)

  • Kim, Min-Seok;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.475-482
    • /
    • 2010
  • In this paper, an efficient two-level parallel domain decomposition algorithm is suggested to solve large-DOF structural problems. Each subdomain is composed of the coarse problem and local problem. In the coarse problem, displacements at coarse nodes are computed by the iterative method that does not need to assemble a stiffness matrix for the whole coarse problem. Then displacements at local nodes are computed by Multi-Frontal Sparse Solver. A parallel version of PCG(Preconditioned Conjugate Gradient Method) is developed to solve the coarse problem iteratively, which minimizes the data communication amount between processors to increase the possible problem DOF size while maintaining the computational efficiency. The test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF structural problems.

Software Development of Generalized Linear/Goal Programming for Microcomputer (일반화된 선형/목표계획법의 마이크로컴퓨터용 소프트웨어 개발)

  • 차동완;고재문;이원택
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 1986
  • The propose of this study is to presnet a generalized linear/goal programming software, which has been developed to run on mickrocomputers with at least 512 K bytes of memory. The main characteristics of our algorithm for solving LP/GP problems are outlined as follows ; First, it uses the revised simplex algorithm, which is the most efficient computational procedure for computers. Second, it employs the sparse matrix technique to overcome the limited memory of microcomputers. Last, it uses the modified product form of invers (MPFI) to reduce round-off errors. The test runs with our code written in FORTRAN show that it can be used as an effective tool for solving linear/goal programming problems of considerable size.

  • PDF