• Title/Summary/Keyword: a servo control system

Search Result 1,211, Processing Time 0.031 seconds

Enabling Technology for High-Speed Laser Drilling of Roll Type FPCB (롤생산방식 유연회로기판의 레이저 드릴링 고속화 요소기술)

  • Woong-Jae Ra;Hwan Young Choi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.127-132
    • /
    • 2023
  • Authors report the performance indicator of Roll to Roll MC (hereinafter referred to as RTR) through experiment that it is possible to process 2.0G acceleration, which cannot be coped with in the existing FPCB RTR, by reducing the weight of the Dancer roll system and controlling the torque using the servo motor. Proposed dancer roll system provides uniform tension to FPCB by solving problems such as high rotation speed, heat generation, and low torque, which were impossible to achieve with the conventional magnet clutch type RTR. Through the development of a lightweight processing method for rolls using magnesium material and the development of a torque control algorithm for servo motor, torque stability also increased. Due to the enabling technology developed in this study, the reaction speed of the dancer roll was improved and the target speed was achieved as well.

A study on the speed characteristic of linear induction motor (유도형 리니어 모터의 속도특성에 관한 연구)

  • CHUNG B. H.;CHOI M. H.;CHO G. B.;BAEK H. L.;SEO J. Y.;KIM D. G.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.151-154
    • /
    • 2004
  • To use the SLIM for servo system, the exact account of thrust about the initial speed is needed, but analyzing by equivalent circuit analyzing methode such as rotary induction motor, the error occurs because of the end effect. So, we applied the equivalent circuit considering the end effect of SLIM in this paper. The current control system is advanced the space vector pulse width modulation by using high arithmetic performance microprocessor such as DSP. In this paper, we use the dynamic characteristic analyzing methode that can calculate efficiently the end effect by using equivalent circuit methode in the operating SLIM system modeling and examine the output characteristics of SVPWM with PI controller.

  • PDF

The conceptual design of the x y $\theta$ fine stage and its optimal design to obtain fast response in lithography system.

  • Kim, Dong-Min;Kim, Ki-Hyun;Lee, Sung-Q.;Gweon, Dae-Gab
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.3-37
    • /
    • 2001
  • The quality of a precision product, in genera, relies on the accuracy and precision of its manufacturing and inspection process. In many cases, the level of precision in the manufacturing and inspection system is also dependent on the positioning capability of tool with respect to the workpiece in the process. Recently the positioning accuracy level employed for some of precision product has reached the level of submicron and long range of motion is required. For example, for 1GDRM lithography, 20nm accuracy and 300nm stroke needs. This paper refers to the lithography stage especially fine stage. In this study, for long stroke and high accuracy, the dual servo system is proposed. For the coarse actuator, LDM(Linear DC Noter) is used and for fine or VCM is used ...

  • PDF

Development of Hip Joint Simulator to Evaluate The Wear of Biomaterials Used in Total Hip Joint Replacement (인공고관절 생체재료 마멸평가를 위한 시뮬레이터 개발)

  • 이권용;윤재웅;전승범;박성길
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.265-270
    • /
    • 2001
  • Hip joint simulator which Is an essential device for evaluating the wear of biomaterials (ultrahigh molecular weight polyethylene, Co-Cr alloy, alumina, etc.) used in total hip joint replacement was developed. This hip joint simulator mimics the joint motion and joint loading of human gait by adapting the 4 degree of freedom in kinematic motion (flexing/extension, adduction/abduction, Internal rotation/external rotation) and axial loading, Four stations are operated by 8 servo-motors and harmony drives. Joint leading was imposed by displacement control from a ball screw, LM guide, and spring system. Each kinematic link system operates separately or coupled modes. A heater and a thermocouple were installed for keeping the body temperature in each station.

  • PDF

New Design of a Permanent Magnet Linear Synchronous Motor for Seamless Movement of Multiple Passive Carriers (다수의 수동형 캐리어를 연속 이송시킬 수 있는 새로운 영구자석 선형동기전동기의 설계)

  • Lee, Ki-Chang;Kim, Min-Tae;Song, Eui-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • Nowadays, small quantity batch production, which is so-called a flexible manufacturing system, is a major trend in the modern factory automation industry. The demands for new transportation system are increased gradually, with which multiple passive carriers carrying materials and semi-products are precisely and individually controlled along a single closed rail. Thus, a new type of permanent magnet linear synchronous motor (PMLSM), which consists of state coils on a single rail and PM movers as many as carriers, is proposed in this paper. The rail can be segmented as modules with pairs of coils and a current amplifier, which makes the transportation system simple; therefore, the rail can be easily extended and repaired. A design method of the new PMLSM with a single carrier is proposed, which can be thought as a new version of PMLSM, a coil-segmented coreless PMLSM (CS-CLPMLSM). Experimental setup for it is made, and propulsion results show that with the help of a new effective coil selection and switching algorithms, the conventional current-based vector control is sufficient to fulfill the position and velocity control of the new PMLSM. The proposed PMLSM is expected to fulfill seamless servo-control of multiple carriers also in process line, such as a new generation of flat panel display manufacturing line.

A Study on Tracking Control of an Industrial Overhead Crane Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 산업용 천정크레인의 추종제어에 관한 연구)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1022-1032
    • /
    • 2000
  • We propose a sliding mode controller tracking the states of a time-varying reference model. The reference model generates the desired trajectories of the states, and the sliding mode controller regulates robustly the errors between the desired states and the measured states. We apply this controller to the overhead crane. Its reference model generates the trajectories of the damped-out swing angle and the swing angular velocity to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. Also, this model generates the desired trajectories of the position and velocity of the crane. The crane model is identified from the experimental data using an orthogonal function. Kalman filtering is applied to estimate the crane states. The designed controller is simulated on a computer and is tested through a 2-ton industrial overhead crane using the vector-controlled servo motor system. It is verified that, from the simulated and experimental results, the sliding mode controller tracking a time-varying reference model works well.

  • PDF

Optimal current angle control method of interior permanent magnet Synchronous Motors (매입형 영구자석 동기전동기의 최적 전류각 제어)

  • 김명찬;김종구;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.352-357
    • /
    • 1996
  • Recently, Permanent Magnet Synchronous Motor(PMSM) drives are widely used for industrial applications due to its high efficiency and high power factor control strategy. PMSM generally have two classifications such as the SPMSM(Surface Permanent Magnet Synchronous Motors) and IPMSM(Inter Permanent Magnet Synchronous Motors). IPMSA has economical merits over SPMSM in higher speed range, mechanical robustness, and higher power rate by the geometric difference. The maximum torque operation in IPMSM is realized by the current angle control which is to utilize additional reluctance torque due to a rotor saliency. In traction, spindle and compressor drives, constant power operation with higher speed range are desirable. This is simply achieved in the DC motor drives by the reduction of the field current as the speed is increased. However, in the PMSM, direct control of the magnet flux is not available. The airgap flux can be weakened by the appropriate current angle control to demagnetize. In this paper, the control method of optimal current vector in IPMSM is described in order to obtain the maximum torque or maximum output with the speed and load variations. The applied algorithm is realized by the proto system with torque and speed control Experimental results show this approach is satisfied for the high performance servo applications. (author). 6 refs., 9 figs., 1 tab.

  • PDF

Pre-Sliding Friction Control Using the Sliding Mode Controller with Hysteresis Friction Compensator

  • Choi, Jeong Ju;Kim, Jong Shik;Han, Seong Ik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1755-1762
    • /
    • 2004
  • Friction phenomenon can be described as two parts, which are the pre-sliding and sliding regions. In the motion of the sliding region, the friction force depends on the velocity of the system and consists of the Coulomb, stick-slip, Streibeck effect and viscous frictions. The friction force in the pre-sliding region, which occurs before the breakaway, depends on the position of the system. In the case of the motion of the friction in the sliding region, the LuGre model describes well the friction phenomenon and is used widely to identify the friction model, but the motion of the friction in the pre-sliding such as hysteresis phenomenon cannot be expressed well. In this paper, a modified friction model for the motion of the friction in the pre-sliding region is suggested which can consider the hysteresis phenomenon as the Preisach model. In order to show the effectiveness of the proposed friction model, the sliding mode controller (SMC) with hysteresis friction compensator is synthesized for a ball-screw servo system.

Tuning of PID Controller for Hydraulic Positioning System Using Genetic Algorithm (유전 알고리즘을 이용한 유압 위치계의 PID 제어기 동조)

  • Kim, Gi-Bum;Park, Seung-Min;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.93-101
    • /
    • 2016
  • This study presents a simple genetic algorithm to systematically design a PID controller for a hydraulic positioning system operated by a proportional solenoid valve. The inverse dead-zone compensator with nonlinear characteristics is used to cancel out the dead-zone phenomenon in the hydraulic system. The object function considering overshoot, settling time, and control input is adopted to search for optimal PID gains. The designed PID controller is compared with the LQG/LTR controller to check the performance of the hydraulic positioning system in the time and frequency domains. The experimental results show that the hydraulic servo system with the proposed PID controller responds effectively to the various types of reference input.

The Development of a Miniature Humanoid Robot System (소형 휴머노이드 로봇 시스템 개발)

  • Sung, Young-Whee;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.420-426
    • /
    • 2001
  • In this paper, we introduce a case study of developing a miniature humanoid robot that has 16 degrees of freedom and is able to perform statically stable walking. The developed humanoid robot is 37cm tall and weighs 1,200g. RC servo motors are used as actuators. The robot can walk forward and turn to any direction on an even surface. It equipped with a small digital camera, so it can transmit vision data to a remote host computer via wireless modem. The robot can be operated in two modes: One is a remote-controlled mode, in which the robot behaves according to the command given by a human operator through the user-interface program running on a remote host computer, the other is a stand-alone mode, in which the robot behaves autonomously according the pre-programmed strategy. The user-interface program also contains a robot graphic simulator that is used to produce and verify the robot\`s gait motion. In our walking algorithm, the ankle joint is mainly used for balancing the robot. The experimental results shows that the developed robot can perform statically stable walking on an even surface.

  • PDF