• Title/Summary/Keyword: a robot manipulator

Search Result 967, Processing Time 0.027 seconds

Minimization of consumption energy for a manipulator with nonlinear friction in PPT motion

  • Izumi, T.;Takase, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.95-99
    • /
    • 1994
  • Robot engineering is developed mainly in the field of intelligibility such as a manipulation. Considering the popularization of robots in the future, however, a robot should be studied from a viewpoint of saving energy because a robot is a kind of machine with a energy conversion. This paper deals with minimizing an energy consumption of a manipulator which is driven in a point-to-point control method. When a manipulator carries a heavy payload toward gravitation or the links are de-accelerated for positioning, the motors at joints generate electric energy. Since this energy can be regenerated to the source by using a chopper, the energy consumption of a manipulator is only heat loss by an electric and a frictional resistance of the motors. The minimization of the sum of these losses is reduced Lo a two-points boundary-value problem of an non-linear differential equation. The solutions are obtained by the generalized Newton-Raphson method in this paper. The energy consumption due to the optimum angular velocity patterns of two joints of a two-links manipulator is compared with conventional velocity patterns such as quadratic and trapezoid.

  • PDF

On Designing a Robot Manipulator Control System Using Multilayer Neural Network and Immune Algorithm (다층 신경망과 면역 알고리즘을 이용한 로봇 매니퓰레이터 제어 시스템 설계)

  • 서재용;김성현;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.267-270
    • /
    • 1997
  • As an approach to develope a control system with robustness in changing control environment conditions, this paper will propose a robot manipulator control system using multilayer neural network and immune algorithm. The proposed immune algorithm which has the characteristics of immune system such as distributed and anomaly detection, probabilistic detection, learning and memory, consists of the innate immune algorithm and the adaptive immune algorithm. We will demonstrate the effectiveness of the proposed control system with simulations of a 2-link robot manipulator.

  • PDF

Laparoscope Manipulator Control for Minimally Invasive Surgery (최소침습수술을 위한 복강경 매니퓰레이터 제어)

  • Kim, Soo-Hyun;Kim, Kwang-Gi;Jo, Yung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.685-696
    • /
    • 2011
  • An efficient laparoscope manipulator robot was designed to automatically control the position of laparoscope via a passive joint on end-effector position. The end position of the manipulator is controlled to have corresponding velocity defined in the global coordinate space using laparoscopic visual information. Desired spatial position of laparoscope was derived from detected positions of surgical instrument tips, then the clinical viewing plane was moved by visual servoing task. The laparoscope manipulator is advantageous for automatically maintaining clinically important views in the laparoscopic image without any additional operator. A laparoscope is mounted to a holder which is linked to four degree of freedom manipulator via universal joint-type passive rings connection. No change in the design of laparoscope or manipulator is necessary for its application to surgery assistant robot system. Expanded working space and surgical efficiency were accomplished by implementing slant linking structure between laparoscope and manipulator. To ensure reliable positioning accuracy and controllability, the motion of laparoscope in an abdominal space through trocar was inspected using geometrical analysis. A designed laparoscope manipulating robot system can be easily set up and controlled in an operation room since it has a few subsidiary devices such as a laparoscope light source regulator, a control PC, and a power supply.

Optimal trajectory tracking control of a robot manipulator

  • Lee, Gwan-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.980-984
    • /
    • 1990
  • In order to find the optimal control law for the precise trajectory tracking of a robot manipulator, a perturbational control method is proposed based on a linearized manipulator dynamic model which can be obtained in a very compact and computationally efficient manner using the dual number algebra. Manipulator control can be decomposed into two parts: the nominal control and the corrective perturbational control. The nominal control is precomputed from the inverse dynamic model using the quantities of a desired trajectory. The perturbational control is obtained by applying the second-variational method on the linearized dynamic model. Simulation results for a PUMA-560 robot show that, by using this controller, the desired trajectory tracking performance of the robot can be achieved, even in the presence of large initial positional disturbances.

  • PDF

A Study on Robust Controller Design of Multi-Joint Robot Manipulator Using Adaptive Control (적응제어기법에 의한 다관절 로보트 매니퓰레이터의 견실한 제어기 설계에 관한 연구)

  • Han, Sung-Hyun;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.108-118
    • /
    • 1989
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonliearity and parameter uncertainty in robot dynamics model. In this paper, an adaptive control scheme for a robot manipulator is proposed to design robust controller using model reference adaptive control technique and hyperstability theory but it does away with] assumption that the process is characterized by a linear model remaining time invariant during the adaptation process. The performance of controller is demonstrated by the simulation about position and speed control of a six-link manipulator with disturbance and payload variation.

  • PDF

Optimal servo control of pneumatic actuator with time-delay (공기압 액츄에이터의 시간지연을 고려한 최적 서보제어)

  • 진상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1455-1458
    • /
    • 1996
  • In this paper trajectory tracking control problems are described for a robot manipulator by using pneumatic actuator. Under the assumption that the so-called independent joint control is applied to the control system, the dynamic model for each link is identified as a linear second-order system with input time-delay by the step response. Then, an optimal servo controller is designed by taking account of such a time-delay. The effectiveness of the proposed control method is illustrated through some simulations and experiments for the robot manipulator.

  • PDF

On Designing a Robot Manipulator Control System using Immunized Recurrent Neural Network (면역화된 귀환 신경망을 이용한 로보트 매니퓰레이터 제어 시스템 설계)

  • 원경재;김성현;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.263-266
    • /
    • 1997
  • In this paper we will develope the immnized recurrent neural network control system of a robot manipulator with high robustness in dynamically changing environment conditions. Immune system detects and eliminates the non-self materials called antigen such as virus, bacteria and so on which come from inside and outside of the living system, so plays an important role in maintaining its own system against dynamically changing environments. We apply this concept to a robot manipulator and evaluate the effectiveness of the above proposed system.

  • PDF

Trajectory tracking controls for a robot manipulator with artificial muscles (인공 고무 근육을 이용한 로보트 메니퓨레이터의 선형 궤도 추적 제어)

  • ;Watanabe, Keigo;Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.642-646
    • /
    • 1992
  • Trajectory tracking control problems are described for a two-link robot manipulator with artificial rubber muscle actuators. Under the assumption that the so-called independent joint control is applied to the control system, the dynamic model for each link is identified as a linear second-order system with time-lag by the step response. Two control laws such as the feedforward and the computed torque control methods, are experimentally applied for controlling the circular trajectory of an actual robot manipulator.

  • PDF

Vibration Control of a Flexible Two-link Manipulator based on the Sliding Mode Control (슬라이딩 모우드 제어에 기초한 유연한 2링크 조작기의 진동제어)

  • Chae, Seung-Hoon;Yang, Hyun-Seok;Park, Young-Phil
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.511-516
    • /
    • 2000
  • In order to not only perform as a extreme model under the severe operating condition but also acquire more diverse and advanced control capability utilizing high compliance, active vibration control of a flexible 2-link robot manipulator are investigated. Multi variable-structured frequency shaped optimal sliding mode is proposed for the flexible robot manipulator like control system, whose control variables, an angular motion of joint and vibration of flexible link, have to be controlled simultaneously by one control torque at a driving joint. The control system is divided into two subsystems, a control input related subsystem and an added subsystem. The proposed sliding mode, composed of multi control variables, makes optimized relation between subsystems and a individual control input, thus, the sliding mode controller can compensate whole dynamics of each subsystems simultaneously. And the possibility and effectiveness are verified by vibration control of a manipulator having two flexible links. Simulation and experiment results show that the proposed control scheme achieves the purpose effectively.

  • PDF

A Sliding Mode Controller Using Neural Network for Underwater Robot Manipulator (해저작업 로봇 매니퓰레이터를 위한 신경회로망을 이용한 슬라이딩 모드 제어기)

  • Lee, Min-Ho;Choi, Hyung-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.305-312
    • /
    • 2000
  • This paper presents a new control scheme using a sliding mode controller with a multilayer neural network for the robot manipulator operating under the sea which has large uncertainties such as the buoyancy and the added mass/moment of inertia. The multilayer neural network using the error back propagation loaming algorithm acts as a compensator of the conventional sliding mode controller to improve the control performance when the initial assumptions of uncertainty bounds are not valid. Computer simulation results show that the proposed control scheme gives an effective path way to cope with the unexpected large uncertainties in the underwater robot manipulator.

  • PDF