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ABSTRACT

In order to find the optimal control law for the
precise trajectory tracking of a robot manipulator, a
perturbational control method is proposed based on a
linearized wmanipulator dynamic mode! which can be
obtained in a very compact and computationally
efficient manner wusing the dual number algebra
Manipulator control can be decomposed into two parts:
the nominal control and the corrective perturbational
control. The nominal control is precomputed from the
inverse dynamic model using the quantities of a
desired trajectory. The perturbational control is
obtained by applying the second-variational method on
the linearized dynamic model. Simulation results for a
PUMA-560 robot show that, by using this controller
the desired trajectory tracking performance of the

robot can be achieved, even in the presence of large
initial positional disturbances
1. INTRODUCTION
As the role of industrial robots is growing
rapidly in the various areas of manufacturing
processes, the necessity of precise path tracking
control is also increasing not only to improve the

productivity and quality of a job but also to broaden
the range of potential applications of robots. In this
context, there have been proposed numerous methods for

robot wmanipulator control: the PD or PID control
[1,2]; the local [linearization method f{3,4]; the
computed torque technique (5,6]; the feedforward
compensation method (7,8]; the nonlinear feedback
control method [9,10,11]; the variable structure
systems method [12,13,14]; the adaptive and learning

control method (15, 16,17, 18], etc. However, except the
PD (or PID) control method, most of those methods are
kept out of practical implementation mainly because of
its structural and computational complexity and/or
inaccurate dynamic models. Although the PD  (or PID)
method is easy to implement, it generally lacks in the
ability to achieve precise control since its
controller gains are ususally determined without
considering the dynamics of a controlled system.

In this paper, we use the perturbational control
approach, for which the linearized dynamic model and
required second-order partial derivative functions can

be efficiently computed by using the dual number
dynamic formulations {20]. Manipulator control may be
decomposed into two control problems: the nominal

control and the corrective perturbational control. The
nominal control deals with how to determine the
control torque vector which produces the predetermined

nominal trajectory of a robot manipulator without
concerning any kind of disturbances. The nominal
control can be precomputed from the inverse dynamic

model using the quantities of a desired trajectory
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The perturbational control deals with how to
obtain the variational control torques which deviate
from the nominal values in accordance with the
variational trajectory generated due to various kinds
of disturbances such as mode! uncertainties, parameter
variations, contacts with environments, etc. To find
the optimum perturbational control, the second-
variational method is used on the linearized dynamic
model. The two controls obtained as above are then
summed to provide the input of the robot manipulator
with an optimal torque vector to track the desired
trajectory under disturbances

The structure of this paper is as follows:
Section 2, the nominal feedforward control
reviewed using the inverse system concept

In
is
In Section

3, the linearized dynamic equations are stated, which
can be conveniently obtained using the dual number
algebra. In Section 4, an optimal tracking control
problem is formulated for a robot manipulator. In
Section 5, the optimal perturbational controller is
derived using the sweep method based on  the
linearized dynamic model. In Section 6, simulation is

performed using the actual parameter values of a PUMA-
560 manipulator, and its results are shown. Finally
Section 7 discusses the results of the paper and draws
some conclusions

2. NOMINAL FEEDFORWARD CONTROL

By applying the inverse system theory [21], we
can compute the input torque to the robot dynamic
system as an output of its right inverse system:

T = H@)u + ba,d) + &q) M
where u is the input to the right inverse system and
the hat symbols denote the quantities of the inverse
system corresponding to those of the original systea.
Thus, from the desired output trajectory {q°,q°,q° }

the nominal input torque vector can be computed as
follows.

7 = A8+ 5’ + & @
Given the trajectory of a robot manipulator, the

problem to find the required control torques is called
the inverse dynamics of the robot. In ap ideal
environment where the perfect inverse dynamic model is

available, by simply applying these torques to the
input of a robot, we may control the manipulator to
track the desired trajectory. In practical cases,

however, there exist various kinds of disturbances due

to parameter variations, model uncertainties, contact
with environments, etc. Thus, in order to track the
output trajectory as closely as possible, it is

extremely important to find the perturbational control
which minimizes the effects of all the disturbances.
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Figure 1. Block diagram for perturbational feedback
control of a robot manipulator

Besides there may exist control variations due to the
change of certain conditions such as the terminal
constraints. In the following sections, we will
formulate a perturbational coatrol problem and solve
for the perturbational control law which tracks the
output trajectory of a manipulator as accurately as
possible.

3. PERTURBATIONAL DYNAMIC EQUATIONS

Consider the dynamic equation for a manipulator
of the following form:

T = 7(q,9,§) 3)
where q=[q.,%, - -,qvl7, §=dq/dt and §=dq/dt, and
variations in the trajectory of the manipulator about
a nominal trajectory {g°.4°,4°}

q=¢+6q, q=4"+5q, a=4+4q. (4)
Eq. (3) can be expanded about the nomiral trajec-
tory as follows:
r = 7+ §r =7(q°4°, §°) + Afd + BéG + Csq + HOT. (5)
where
. 07(q,4,4 47(q,4, 4% d7(q,9,8)
A = 2 B o= —=, C-= -
aq aq 8q ®)

and H.0.T. stands for higher-order terms. Since 7°=

7(q%, ¢°, %) is a nominal dynamic equation, the per-
turbational dynamic equation is given by the following
form:

(1) = A@)EG() + B(t)dq(t) + C(t)sq(t). )
The coefficient matrices A(t), B(t) and C(t) can be
derived in both a recursive form and a nonrecursive

form. In both cases, those matrices can be obtained in
a very compact and compuatatiopally efficient manner
using the dual number algebra [20].

The dynamic equation, Eq. (1), can be rewritten in
the following state-space form:

X2

o ] . 0 ®
x —H"'(xt){h(xl,xzng(x.)}J H- ) | 7
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where X = (x.,xl)r = (q,¢)". By denoting the right-
hand side of this equation by f(x,7,t), we have

x(t) = f(x,7,t). 9)
Linearizing this equation along the nominal trajec-
tory, we obtain the following perturbational dynamic

equation in a state-space form:

§x(t) = F)éx(t) + G(p)ér(t), with §x(to) specified (10)

where
] _ [éa) _ [a-4° (11}
oo (2] 18] e:8]
_ ofx, Tty 0 I (12)
FO = =% T [-—A"(t)C(t) —A*'(tmm} !
_ M(X,T,t) _ 0 (13
GO = =% = {A-‘m] )

where the matrices A{t), B(t) and C(t) are defined the
same as Eq. (7).

4. FORMULATION OF A TRACKING CONTROL PROBLEM
For the problem formulation, we will use the

short-written dynamic equation Eq. (9). We carry out
the analysis with a fixed terminal time t; to simplify

the discussion. Thus, consider a genmeral performance
index of the following form:
t
T = Hxitp,ty) +/’L(x,r,t)dz. {4
to

index J
with
cons—

The problem is to minimize the performance
subject to the system equations given by Eq. (9}
x(ts) specified, and the following terminal
traints:

Y(x(ty),ty) = 0. (15
The augmented performance index J is obtained by
adjoining the comstraints due to the originanal per-
formance index J using Lagrange multipliersAwandyp.

J (16)

.
7+ STy (xlegty) +/ AT (Fx, 7, ) - %) dt
15

<
MKMJﬂ+vm@UmU)+A%M&n0+ﬂmmnﬁﬁ—ﬂpL

We may now define the Hamiltonian as

Hxor a0 2 ATk 0 + Lix,m,0) (17)
Then, the augmented performance index can be rewritten

as:

T o= g (x(tp),ty) + vTep(xts), t) (18)
ty
+/ (H(x,r,A,t)-A(z)Tx) dt.
10 -
¥e now consider a perturbation in J due to the

perturbations §T and §x in the control T(t) and the st-
ate x(t), respectively. The perturbations are assumed
to be weak ones such that §x(t) and §T(t) are both

small and bounded. From the necessary conditions for
an extremum, we have:
. _o6H 8L(x, 1) ) T
M = <22 = FT _ 3T, _ .09 oy 19)
) T (M) —5r Atp= L‘_?;+{E<_}VJ ,(
=y
20 0. (20)
ar



By applying the necessary conditions, the nonlinear
problem becomes the linear quadratic type problem with
the cross-product terms of the variationséx andStin
the integrand of the performance index: find &7

which minimizes
.1 N 4 - | 6
67 = 3o om s I )oe, - [} (o7 o7 pu | “

subject to
— 8k + FO8x() + GO6T() = 0, 6x(to) specified, (22)

b9 = (¥=bX)py, 51 is specified,

(23)

where
*H PH

- FH 0
== T 1-7‘;3-,3p=érir,w,

o [P

Py
= a‘__‘f (29)

To determine variations in the control torques
$7), which minimizefJ subject to Fgs. (22) and (23),
we define a new Hamiltonian wusing multipliers §Aand

dy-

SH % 5MT(Fox+ Gor}+ ;{mg.,sx + 6TTH b7+ 26x7H 7} (25)

By applying necessary conditions, we obtain 4r:

sr(t) = —HAW {BLWx®+CTOAB] - (20)

provided that H,pis nonsingular. &x and A are

solutions of the following two-point boundary value
problen,
§x(t) = M Ex(t) -D@OEXY, &xt) = 0, (7
M) = —E@) 6x(t) — MT(2) dx(t),
=1 T T dy) (28)
82(tp) = [{due + 9T, Jox + yTav| -y
where
(29)
M) = F&) - GOEIMAL®,
D) = GWEI®GT, 0
Et) = Hel)— HoWHZOHL®. g
5. PERTURBATIONAL SOLUTION
The two-point boundary-value problem formulated
in the previous sectioa can be solved using the sweep
method [19]. To do this, the following linear
transformation equations are introduced:
St = S(Bx(t) + R(tdw (32)
§ = RTEx(t) + Qitvdv 33)

where oy and 8% are constant infinitesimal vectors.
S(t), R(t) and Q(t) are time-varying matrices. These
transformations lead to the following matrix
equations:

S(t)

]

-MT()S(t) — S(OM(E) + SEDIS(E) — E(2)
St = [bee + @T0),]

=ty

(34)

I

(swp® - MT0) RO, Retp = [¥7]

=iy
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Q) = RIHDWR®D,  Qty) = 0. (36)

The perturbational torque vector §t is then obtained

as follows:
(B = ~ Bl [{H,,a) + GTw(sw - R(t)Q“(t)RT(t))}éx(t)
+ GTOROQ 59
This is a linear feedback control law which wminimizes

(37)

the performance index J, and can be rewritten in the
following form:
§r(t) = K (0éx(t) - Ka(t)sy , (38)
where
Kit) = H30{H.(0) + GTo (S®) - ROQWRT) } 39)
Koty = HZGTORGLQ®). (40)
Note that the optimal feedback gain matrices, K;(t)
and K,(t), change with time but can be precomputed
along the predetermined, desired nominal trajectory
and stored for later use. No knowledge of the initial

state, X,, is required for the computation of the gain
matrices.

The second-order partial derivatives of  the
Hamiltonian H, such as Hp;, Hpy and Hyx, constitute
the above feedback gain matrices as well as the matrix
differential equations, Egs. (34) through (36). Hence,

in order to evaluate the gain matrices, it s
necessary to compute the second-order partial
derivatives of the dynamic equations, and these
partial derivatives are computed using the higher-
order dual aumber algebra [20).

Finally, the overall control law for real-time
optimal trajectory tracking is found by adding the
above perturbational feedback control  to the nominal
control T® which can be found using the inverse
dynamics as given by Eq. (2).

() = 0@ + §r) «“n

6. SIMULATION AND RESULTS

To illustrate the use of the techniques developed
in the previous sections, a case study for a PUMA-560
manipulator is made in this section. All the required
computer programs are written in Ada (VADS version
5.5).

To find the optimal control law which tracks the
desired trajectory, we used a performance index with
the following quadratic forms:

1 T
Hx(ty),ty) = E(x(zf) —xd) H(x(ty) - x§) (42)
1
Lix,7,t) = E(x(t) - x‘(t))TQ(x(t) - x"(t))
;(r(t) ~ 7"'\1))TR ROEES0)
following constraint

{43)

+

and the
states:

equations on  final

Y (x(tn)its) = x(ty) —x3 = 0 (44)
where x9 is a desired trajectory, and @ and R are
positive semidefinite and definite matrices,
respectively, Specifically, both Q and R are defined
as diagonal matrices such that the diagonal elements
of Q are set as 580.0, 100.0, 35.0, 250.0, 220.0, 40.0
30.0 3.5, 1.5 1.0, 0.8, 1.0, and the values of the
diagonal elements of R are set to be as 0.1, 0.04,
0.1, 0.37, 0.2, 0.35. We also assume that the terminal
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conditions are fixed so thatéy(ty) = 0.Before simulation
or actual real-time control, we precompute the nominal
control torques, 7% and the optimum feedback gain
matrix, K for a perterbational control using the
method described in the previous section.
Part of the simulation results are shown in Figs

(2) through (4). Fig.2 (joint position) and Fig. 3
(joint rate) show the desired trajectory and actual
trajectory of joint 3. Fig.4 shows the desired torque
function and actual torque function. The graphs for
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the other joints are omitted due to space limitation

To test the robustness of the tracking controller, we
introduced initial positional disturbances of various
magnitude. In the presence of the large initial
disturbances, the actual trajectories converge to the
desired trajectories in a very satisfactory manner as
shown in the figures, and at the final time, each
actual trajectory becomes almost the same the
desired final state of each joint

as

7. CONCLUSIOXS

We have presented a method for precise trajectory
tracking control of a robot manipulator. The gain
matrix of the perturbational controller, as well as
the nominal control, can be computed off-line, thereby
eliminating real-time computation. The simulation
results for a PUMA-560 robot show that, by using this
controller, the trajectory of each manipulator joint
converges in an excellent manner to the desired
trajectory even in the presence large initial
positional disturbances

The method presented in this paper facilitates
the practical implementation of an advanced controller

of

for a robot manipulator without the burden of real-
time computational difficulty. Notice, however, that
this method is not suitable for systems with

constrained control torques. Extension to such a case
is a subject for further research.
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