• 제목/요약/키워드: a research nuclear reactor

검색결과 1,475건 처리시간 0.025초

핵연료조사리그 냉각수 유동 모의장치 개발 (Development of Coolant Flow Simulation System for Nuclear Fuel Test Rigs)

  • 홍진태;정창용;허성호;김가혜
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.117-123
    • /
    • 2015
  • 핵연료 연소시험 도중 핵연료봉에서 발생하는 열을 효과적으로 제거하기 위해서는 핵연료의 발열량을 정확하게 계산하고 충분한 유속을 갖는 냉각수를 순환시켜야 한다. 하나로는 개방형 수조 형태로서 핵연료 연소시험을 위한 별도의 냉각수 순환 루프를 갖추고 있는데, 여기에 핵연료 조사리그를 장착하고 냉각수를 순환시킴으로써 조사중인 핵연료봉의 온도를 일정온도 이하로 유지시킨다. 특히 순환되는 냉각수의 유속이 매우 높은 상태에서 조사리그 내에 부착된 부품이나 센서들이 유체유발 진동에 의해 파손되거나 기능을 상실하는 경우 매우 큰 기회비용을 야기한다. 본 연구에서는 조사리그 부품의 건전성 사전 검토 및 고속 유동에서의 센서 동작 특성에 대한 사전검토를 위해 냉각수 모의 순환장치를 개발하였다.

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

Drop Performance Test of Conceptually Designed Control Rod Assembly for Prototype Generation IV Sodium-Cooled Fast Reactor

  • Lee, Young-Kyu;Lee, Jae-Han;Kim, Hoe-Woong;Kim, Sung-Kyun;Kim, Jong-Bum
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.855-864
    • /
    • 2017
  • The control rod assembly controls reactor power by adjusting its position during normal operation and shuts down chain reactions by its free drop under scram conditions. Therefore, the drop performance of the control rod assembly is important for the safety of a nuclear reactor. In this study, the drop performance of the conceptually designed control rod assembly for the prototype generation IV sodium-cooled fast reactor that is being developed at the Korea Atomic Energy Research Institute as a next-generation nuclear reactor was experimentally investigated. For the performance test, the test facility and test procedure were established first, and several free drop performance tests of the control rod assembly under different flow rate conditions were then carried out. Moreover, performance tests under several types and magnitudes of seismic loading conditions were also conducted to investigate the effects of seismic loading on the drop performance of the control rod assembly. The drop time of the conceptually designed control rod assembly for 0% of the tentatively designed flow rate was measured to be 1.527 seconds, and this agrees well with the analytically calculated drop time. It was also observed that the effect of seismic loading on the drop time was not significant.

Current Status and Future Prospective of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) Development for Nuclear Reactor System Applications

  • Kim, Tae Kyu;Noh, Sanghoon;Kang, Suk Hoon;Park, Jin Ju;Jin, Hyun Ju;Lee, Min Ku;Jang, Jinsugn;Rhee, Chang Kyu
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.572-594
    • /
    • 2016
  • As one of the Gen-IV nuclear energy systems, a sodium-cooled fast reactor (SFR) is being developed at the Korea Atomic Energy Research Institute. As a long-term national research project, advanced radiation resistant oxide dispersion strengthened steel (ARROS) is being developed as an in-core fuel cladding tube material for a SFR in the future. In this paper, the current status of ARROS development is reviewed and its future prospective is discussed.

원자로내부구조물의 지진해석에 관한 연구 (Study on the Seismic Analysis of the Reactor Vessel Internals)

  • Jhung, Myung-Jo;Park, Keun-Bae;Hwang, Won-Gul
    • Nuclear Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.28-36
    • /
    • 1993
  • 최근 국내에서 가압경수로형 원자력발전소를 표준화하기 위한 작업이 이루어지고 있다. 본 논문에서는 설계표준화 작업의 일환으로서 원자력발전소 원자로내부구조물에 대한 내진설계기준을 제시하였다. 영광 3,4호기 최종설계단계에서의 운전기준지진에 대한 원자로용기 플랜지와 스너버의 거동을 입력하중으로 사용하여 지진설계하중을 계산하였고 이로부터 원자로내부구조물의 설계에 허용가능한 원자로용기의 거동을 규정하였다. 해석방법등 해석의 전반적인 개요에 대하여 설명하였고 원자로용기의 거동에 따른 원자로내부구조물 각각의 응답에 대하여 자세히 고찰하였다.

  • PDF

원자로 이용률 향상을 위한 냉중성자원 시설의 고장모드영향분석 및 정지이력의 원인분석 (FMEA for CNS Facility and Cause Analysis of Shutdown Events to Improve Reactor Availability)

  • 이윤환;황정식
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.115-120
    • /
    • 2020
  • From 2009 when the CNS facility was installed, the number of reactor failures due to abnormal CNS facility system has increased significantly. Of the total of 19 nuclear reactor shutdowns over the six years from 2009 to 2019, there were 10 nuclear reactor shutdowns associated with the CNS facility, which are very numerous. Therefore, this report intends to analyze the history of nuclear reactor shutdowns due to CNS facility system failure in detail, and to present the root cause and solution to problems. As a result of FMEA implementation of CNS facility system, a total of 76 SPVs were selected. In addition, 10 cases of reactor shutdown history due to CNS facility system abnormalities were analyzed in detailed, and improvement plans for solving the root cause and problem were suggested for each trip history. The results of this study are expected to be able to operate the domestic research reactor and CNS facilities more stably by providing effective measures to prevent recurrence of CNS facilities and reactor trips.

원자력 통합안전경영시스템을 이용한 요르단연구로사업의 문서관리 (Document Management for Jordan Research and Training Reactor Project by ANSIM)

  • 박국남;최민호;권용세
    • 산업경영시스템학회지
    • /
    • 제39권2호
    • /
    • pp.113-118
    • /
    • 2016
  • Project management is a tool for smooth operation during a full cycle from the design to normal operation including the schedule, document, and budget management, and document management is an important work for big projects such as the JRTR (Jordan Research and Training Reactor). To manage the various large documents for a research reactor, a project management system was resolved, a project procedure manual was prepared, and a document control system was established. The ANSIM (Advanced Nuclear Safety Information Management) system consists of a document management folder, document container folder, project management folder, organization management folder, and EPC (Engineering, Procurement and Construction) document folder. First, the system composition is a computerized version of the Inter-office Correspondence (IOC), the Document Distribution for Agreement (DDA), Design Documents, and Project Manager Memorandum (PM Memo) works prepared for the research reactor design. Second, it reviews, distributes, and approves design documents in the system and approves those documents to register and supply them to the research reactor user. Third, it integrates the information of the document system-using organization and its members, as well as users' rights regarding the ANSIM document system. Throughout these functions, the ANSIM system has been contributing to the vitalization of united research. Not only did the ANSIM system realize a design document input, data load, and search system and manage KAERI's long-period experience and knowledge information properties using a management strategy, but in doing so, it also contributed to research activation and will actively help in the construction of other nuclear facilities and exports abroad.

Optimizing irradiation conditions for natural molybdenum in WWR-K reactor

  • D.S. Sairanbayev;Sh. Kh. Gizatulin;A.N. Gurin;Ye. T. Chakrova;M.T. Aitkulov;A. Zh. Nessipbay;A. Ch. Ashibayev;A.A. Shaimerdenov
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3566-3570
    • /
    • 2024
  • The production of the radioisotope molybdenum-99 in the WWR-K research reactor is achieved through the activation method 98Mo(n,γ)99Mo, utilizing a target of natural molybdenum trioxide irradiated under standard conditions (thermal neutron spectra and water environment). Under such conditions, the maximum specific activity of molybdenum-99 reaches (2.3 ± 0.3) Ci/g Mo after 7 d of irradiation. However, the escalating demand for molybdenum-99 and the need to reduce its production cost, necessitates urgent and increased productivity. This study aims to optimize the irradiation conditions for molybdenum powder in the WWR-K reactor to increase the specific activity of molybdenum-99. For this purpose, we evaluated various irradiation capsule designs comprised various neutron moderator materials and thicknesses. Through extensive modeling calculations, we obtained an optimal capsule design that increases the specific activity of molybdenum-99 to 3.31 Ci per 1 g of Mo.

Effect of Spray System on Fission Product Distribution in Containment During a Severe Accident in a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Rahgoshay, Mohammad;Sayareh, Reza;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.975-981
    • /
    • 2016
  • The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using the RELAP5/3.2 code

  • Hedayat, Afshin
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.953-967
    • /
    • 2017
  • In this paper, a complete station blackout (SBO) or complete loss of electrical power supplies is simulated and analyzed in a downward cooling 5-MW pool-type Material Testing Reactor (MTR). The scenario is traced in the absence of active cooling systems and operators. The code nodalization is successfully benchmarked against experimental data of the reactor's operating parameters. The passive heat removal system includes downward water cooling after pump breakdown by the force of gravity (where the coolant streams down to the unfilled portion of the holdup tank), safety flapper opening, flow reversal from a downward to an upward cooling direction, and then the upward free convection heat removal throughout the flapper safety valve, lower plenum, and fuel assemblies. Both short-term and long-term natural core cooling conditions are simulated and investigated using the RELAP5 code. Short-term analyses focus on the safety flapper valve operation and flow reversal mode. Long-term analyses include simulation of both complete SBO and long-term operation of the free convection mode. Results are promising for pool-type MTRs because this allows operators to investigate RELAP code abilities for MTR thermal-hydraulic simulations without any oscillation; moreover, the Tehran Research Reactor is conservatively safe against the complete SBO and long-term free convection operation.