• Title/Summary/Keyword: a regenerative drive

Search Result 45, Processing Time 0.028 seconds

Design of 6-bit 800 Msample/s DSDA A/D Converter for HDD Read Channel (HDD 읽기 채널용 6-bit 800 Msample/s DSDA 아날로그/디지털 변환기의 설계)

  • Jeong, Dae-Yeong;Jeong, Gang-Min
    • The KIPS Transactions:PartA
    • /
    • v.9A no.1
    • /
    • pp.93-98
    • /
    • 2002
  • This paper introduces the design of high-speed analog-to-digital converter (ADC) for hard disk drive (HDD) read channel applications. This circuit is bated on fast regenerative autozero comparator for high speed and low-error rate comparison operation, and Double Speed Dual ADC (DSDA) architecture for efficiently increasing the overall conversion speed of ADC. A new type of thermometer-to-binary decoder appropriate for the autozero architecture is employed for no glitch decoding, simplifying the conventional structure significantly. This ADC is designed for 6-bit resolution, 800 Msample/s maximum conversion rate, 390 mW power dissipation, one clock cycle latency in 0.65 m CMOS technology.

Development of Integrated Control Logic of Wheel Motor Drive Electric Bus considering Stability and Driving Performance (휠 모터 구동 전기 버스의 차량 안정성 및 주행 성능을 고려한 통합 제어 로직 개발)

  • Jeong, Jongryeol;Choi, Jongdae;Shin, Changwoo;Lee, Daeheung;Lim, Wonsik;Park, Yeong-Il;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.40-48
    • /
    • 2013
  • Recently, many types of electric vehicles including a heavy duty vehicle have been developed and released because of the better fuel economy and less gas products. In this study, research about an electric bus which utilizes the wheel motor drive system was conducted. The wheel motor is a motor connected to the wheel directly only with a simple gear so that the developer can utilize the space efficiently and the whole system efficiency will be better because of simple structure. However, because it is different from former types of vehicles which use the differential gear, the development of the integrated control logic is required in order to meet the vehicle stability and driving performance. The developed control logic is composed with direct yaw moment control, regenerative braking control and slip control logics. It is compared to the control logics which does not consist of direct yaw moment control and slip control when the vehicle is exposed in tough situations. For the unification of the control logic, a few maps were developed and applied to determine the output torque of each motor according to the driving status. As a result, it is shown that the developed control logic is more safe and well follow the target speed than the other control logic applied simulations.

Switching Characteristics and PSPICE Modeling for MOS Controlled Thyristor (MOS 제어 다이리스터의 특성 해석 및 시뮬레이션을 위한 모델)

  • Lee, Young-Kook;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.237-239
    • /
    • 1994
  • The MOS-controlled thyristor(MCT) is a new power semi-conductor device that combines four layers thyristor structure presenting regenerative action and MOS-gate providing controlled turn-on and turn-off. The MCT has very fast switching speed owing to voltage controlled MOS-gate, and very low on-state voltage drop resulting from regenerative action of four layers thyristor structure. In addition, because of a higher dv/dt rating and di/dt rating, gate drive circuit and snubber circuit can be simpler comparing to other power switching devices. So recently much interest and endeavor is being applied to develop the performance and ratings of the MCT. This paper describes the switching characteristic of the MCT for its practical applications and presents a model for PSPICE circuit simulation. The model for PSPICE circuit simulation is compared to the experimental result using MCTV75P60F1 made by Harris co..

  • PDF

Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles (병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어)

  • Park, Joon-Young;Sim, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

Characteristics of Two Phase Chopper with Two Separate Groups of DC Motors in Regenerative Braking (회생용 2분할 2상쵸퍼의 특성)

  • Han, Kyung-Hue
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.3
    • /
    • pp.115-123
    • /
    • 1985
  • A two phase chopper system with two separate groups of DC motors for regenerative braking is dealt with in this article. The main circuit consists of two sets of chopping parts, four diodes and two separate groups of DC motors. Although the proposed chopper circuit requires more circuit elements than the conventional two phase chopper system with combined output, it has the following advantages`(1). Ripple frequency of smoothing reactor current becomes twice as high as that of the conventional system, so the continuous current range and the ripple ratio are improved greatly. Therefore, the efficiency becomes even higher, the capacity of commutation equipment is reduced and the inductive interference become less.(2). Load current division becomes equalized. Therefore it is possible to drive not only series motors but also shunt, separately excited and compound motors.

  • PDF

Four-Quadrant Control System of SRM for Traction Drive (견인용 SRM의 4상한 구동을 위한 제어시스템)

  • Hwang Hyung-Jin;Park Sung-Jun;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.186-189
    • /
    • 2004
  • Switched reluctance machine has much attention because of high efficiency, high power and DC series torque characteristics with a traction drive. But the motor has to have a regenerative mode when it is adopted in an electric vehicle. A current divergence during the regeneration makes difficulties in the control of SRM. This paper proposes a reference current limitation strategy for a stable regeneration based on simulations and experimental tests. The motor is operated with conventional current limit and switching angle control method in motoring mode. Simulations and experiments are executed to verify proposed method.

  • PDF

Current Limit Control for a Four-quadrant Operation of SRM Drive (SRM의 4상한 구동을 위한 전류제한 방식)

  • 안진우;강유정
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.285-291
    • /
    • 2003
  • Switched reluctance machine has much attention as a traction drive because of high efficiency, high power and DC series torque characteristics. But the motor has to have a regenerative mode when it is adopted in electric vehicle and current divergence during the regeneration makes difficulties in the control. This paper proposes a reference current limitation strategy for a stable regeneration based on simulations and experimented tests. The motor is operated with conventional current limit and switching angle control method in motoring mode. Simulations and experiments are excuted to verify the feasibility of the proposed method.

A Design of the drive speed control system using IGBT full-bridge dc-dc converter for the battery fork-lift truck. (IGBT full-bridge dc-dc 변환기를 이용한 전동지게차의 주행제어 시스템 개발)

  • Chun, Soon-Yung;Park, Sung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1176-1178
    • /
    • 1992
  • This paper shows enhanced working performance of the battery fork-lift truck by developing the IGBT full bridge dc-dc convertor using one-chip micro-processor. The PWM pulse is generated from a 16 bit one-chip micro-processor for the speed control of DC motor. In order to ensure the operation of IGBT and motor pecewisely, IGBT gate drive circuit was designed by using current limiting IC and hige voltage limit IC. And also It is able to regenerative braking.

  • PDF

Bq-ZSI fed Induction Motor Drive System Using Modified Space Vector Modulation (변형 공간벡터 변조 기법이 적용된 Bq-ZSI를 이용한 유도전동기 구동시스템)

  • Han, Sang-Hyup;Kim, Heung-Geun;Cha, Honnyong;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • This study investigates a bidirectional quasi-Z-source inverter (Bq-ZSI) system with bidirectional power transfer capability and a modified space vector modulation scheme for reducing the ripple of the inductor current. By replacing the diode in the impedance network with an active switch, the power flow can be bidirectional. The average inductor current of the Bq-ZSI network is negative in the regenerative braking mode, thereby regenerating the power. In addition, modified space vector modulation scheme is applied to the Bq-ZSI to control shoot-through time effectively. A 5 kW prototype is built and tested to implement the proposed system. Experimental results show that the Bq-ZSI system is capable of regenerative braking of the induction motor and that the modified space vector modulation method is efficient.

Estimation of ESR in the DC-Link Capacitors of AC Motor Drive Systems with a Front-End Diode Rectifier

  • Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.411-418
    • /
    • 2015
  • In this paper, a new method for the online estimation of equivalent series resistances (ESR) of the DC-link capacitors in induction machine (IM) drive systems with a front-end diode rectifier is proposed, where the ESR estimation is conducted during the regenerative operating mode of the induction machine. In the first place, a regulated AC current component is injected into the q-axis current component of the induction machine, which induces the current and voltage ripple components in the DC-link. By processing these AC signals through digital filters, the ESR can be estimated by a recursive least squares (RLS) algorithm. To acquire the AC voltage across the ESR, the DC-link voltage needs to be measured at a double sampling frequency. In addition, the ESR current is simply reconstructed from the stator currents and switching states of the inverter. Experimental results have shown that the estimation error of the ESR is about 1.2%, which is quite acceptable for condition monitoring of the capacitor.