• 제목/요약/키워드: a red phosphorescent dopants

검색결과 10건 처리시간 0.032초

Intramolecular Energy Transfer in Heteroleptic Red Phosphorescent Organic Light Emitting Diodes

  • Lee, Jun-Yeob;Kim, Sung-Hyun;Jang, Jyong-Sik
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.232-232
    • /
    • 2006
  • Intramolecular energy transfer in heteroleptic red phosphorescent dopant materials with mixed ligand units in one molecule was studied. 1-phenylisoquinoline(piq) and phenylpyridine(ppy) moieties were introduced as ligands for Ir based phosphorescent dopants and light emission mechanism was investigated. Intramolecular energy transfer from ppy ligand to piq ligand resulted in pure red emission without any green emission from ppy. Current efficiency of red devices was improved from 4 cd/A to 4.8 cd/A by using mixed ligand structures and deposition temperature of red dopant could be lowered by introducing ppy ligand.

  • PDF

Highly Efficient Simple-Structure Red Phosphorescent OLEDs with an Extremely Low Doping Technology

  • Jeon, Woo-Sik;Park, Tae-Jin;Kwon, Jang-Hyuk
    • Journal of Information Display
    • /
    • 제10권2호
    • /
    • pp.87-91
    • /
    • 2009
  • Highly efficient red phosphorescent OLEDs (PHOLEDs) with a simple, organic, triple-layer structure was developed using the narrow-bandgap fluorescent host material bis(10-hydroxybenzo[h] quinolinato)beryllium complex (Bebq2) and the deep-red dopant tris(1-phenylisoquinoline)iridium (Ir(piq)3). The maximum current and power efficiency values of 12.71 cd/A and 16.02 lm/W, respectively, with an extremely low doping technology of 1%, are demonstrated herein. The results reveal a practical, cost-saving host dopant system for the fabrication of highly efficient PHOLEDs involving the simple structure presented herein, with a reduction of expensive Ir dopants.

White Organic Light Emitting Diodes using Red and Blue Phosphorescent Materials with Blocking Layer

  • Park, Jung-Hyun;Kim, Gu-Young;Lee, Seok-Jae;Seo, Ji-Hyun;Seo, Ji-Hoon;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권5호
    • /
    • pp.218-221
    • /
    • 2007
  • High-efficiency white organic light-emitting diodes(WOLEDs) were fabricated with two emissive layers and an blocking layer was sandwiched between two phosphorescent dopants, bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III(FIrpic) as the blue emission and a newly synthesized red phosphorescent material guest, bis(5-acetyl-2-phenylpyridinato-N,C2') acetylacetonate($(acppy)_2Ir(acac)$). This blocking layer prevented a T-T annihilation in a red emissive layer, and balanced with blue and red emission as blocking of hole carriers. The white device showed Commission Internationale d'Eclairage($CIE_{x,y}$) coordinates of (0.317, 0.425) at 22400 $cd/m^2$, a maximum luminance of 27300 $cd/m^2$ at 268 $mA/cm^2$, a maximum luminous efficiency and power efficiency of 26.9 cd/A and 18.6 lm/W.

Development of Fluorescent or Phosphorescent Materials for Non-Dopant Red Organic Light-Emitting Diodes

  • Chen, Chin-Ti
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1133-1137
    • /
    • 2005
  • In this paper, a renovated approach in the fabrication of red organic light-emitting diodes (OLEDs) is described. The hard-to-control doping process required for dopant-based red OLEDs can be avoided due to the novel red fluorophores that are not concentration quenching in solid state. Doping is in general a must for phosphorescence OLEDs because of the triplet-triplet annihilation, a common problem for phosphorophore dopants. However, we have recently found that extraordinary red iridium complex showing relatively short emission lifetime render the non-doped phosphorescence red OLED possible.

  • PDF

The Optimization of Efficient White Organic Light-Emitting Diodes Using a Blue Fluorescent and a Red Phosphorescent Dopant

  • Seo, Ji-Hoon;Kim, Jun-Ho;Seo, Ji-Hyun;Hyung, Gun-Woo;Park, Jung-Hyun;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1470-1473
    • /
    • 2007
  • We have demonstrated the optimization of white organic light-emitting diodes with two separated emissive layers using a blue fluorescent and a red phosphorescent dopant. The maximum luminous efficiency of the devices showed 7.93, 9.70, 11.8, and 14.3 cd/A. The $CIE_{xy}$ coordinates also showed (x = 0.33, y = 0.36), (x = 0.33, y = 0.35), (x =0.31, y = 0.35), and (x = 0.29, y = 0.36) at 6V, respectively.

  • PDF

Highly Efficient Red Phosphorescent OLEDs Based on Ir(III) Complexes with Fluorine-substituted Benzoylphenylpyridine Ligand

  • Kang, Hyun-Ju;Lee, Kum-Hee;Lee, Suk-Jae;Seo, Ji-Hyun;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3711-3717
    • /
    • 2010
  • Four orange-red phosphorescent Ir(III) complexes were designed and synthesized based on the benzoylphenylpyridine ligand with a fluorine substituent. Multilayered OLEDs with the device structure, ITO/2-TNATA/NPB/CBP : 8% Ir(III) complexes/BCP/Liq/Al, were fabricated using these complexes as dopant materials. All the devices exhibited orange-red electroluminescence and their electroluminescent properties were quite sensitive to the structural features of the dopants in the emitting layers. Among these, the maximum luminance ($14700\;cd/m^2$ at 14.0 V) was observed in the device containing Ir(III) complex 1 as the dopant. In addition, its luminous, power and quantum efficiency were 11.7 cd/A, 3.88 lm/W and 9.58% at $20\;mA/cm^2$, respectively. The peak wavelength of electroluminescence was 606 nm with CIE coordinates of (0.61, 0.38) at 12.0 V. The device also showed stable color chromaticity with various voltages.

이중 도핑을 이용한 고효율 적색 인광 유기발광소자 (High Efficiency Red Phosphorescent Organic Light Emitting Devices Using the Double Dopant System)

  • 장지근;신현관;김원기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.351-352
    • /
    • 2008
  • A new high efficient red PhOLED using a host of $Bebq_2$ and double dopants of $(pq)_2$Ir(acac) and SEC-R411 have been fabricated and evaluated. The device doubly doped with $(pq)_2$Ir(acac) and SFC-R411 showed the current efficiency improvement of 22% under a luminance of 10000 cd/$m^2$ in comparision with the device singly doped with SFC-R411. The luminance, current efficiency and central wavelength of the doubly doped device were 9300 cd/$m^2$ at 7V, 11.1 cd/A under a luminance of 10000 cd/$m^2$ and 625 nm, respectively.

  • PDF

도판트 농도가 단일 발광층 인광 백색 OLED의 전기 및 광학적 특성에 미치는 영향 (Effects of Dopant Concentration on the Electrical and Optical Properties of Phosphorescent White Organic Light-emitting Diodes with Single Emission Layer)

  • 도재면;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제27권4호
    • /
    • pp.232-237
    • /
    • 2014
  • We have fabricated white organic light-emitting diodes (OLEDs) by co-doping of red and blue phosphorescent guest emitters into the single host layer. Tris(2-phenyl-1-quinoline) iridium(III) [$Ir(phq)_3$] and iridium(III)bis[(4,6-di-fluorophenyl)-pyridinato-$N,C^{2^{\prime}}$]picolinate (FIrpic) were used as red and blue dopants, respectively. The effects of dopant concentration on the emission, carrier conduction and external quantum efficiency characteristics of the devices were investigated. The emissions on the guest emitters were attributed to the energy transfer to the guest emitters and direct excitation by trapping of the carriers on the guest molecules. The white OLED with 5% FIrpic and 2% $Ir(phq)_3$ exhibited a maximum external quantum efficiency of 19.9% and a maximum current efficiency of 45.2 cd/A.

발광층 내의 스페이서가 인광 OLED의 효율 및 발광 특성에 미치는 영향 (Effects of Spacer Inserted Inside the Emission Layer on the Efficiency and Emission Characteristics of Phosphorescent Organic Light-emitting Diodes)

  • 서유석;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제27권6호
    • /
    • pp.377-382
    • /
    • 2014
  • We have investigated the effects of spacer layer inserted between blue and red doped emission layers on the emission and efficiency characteristics of phosphorescent OLEDs. N,N'-di-carbazolyl-3,5-benzene (mCP) was used as a host layer. Iridium(III)bis[(4,6-di-fluorophenyl)- pyridinato-N,$C^2$']picolinate (FIrpic) and tris(1-phenyl-isoquinolinato-$C^2$,N)iridium(III) [Ir(piq)3] were used as blue and red dopants, respectively. The emission layer structure was mCP (1-x) nm/mCP:$Ir(piq)_3$ (5 nm, 10%)/mCP (x nm)/mCP:FIrpic (5 nm, 10%). The thickness of mCP spacer layer was varied from 0 to 15 nm. The emission from $Ir(piq)_3$ and the efficiency of the device were dominated by energy transfer from mCP host and FIrpic molecules, and by diffusion of mCP host triplet excitons.

The prospects of highly power efficient OLEDs using molecular dopants for display and lighting applications

  • Werner, Ansgar;Blochwitz-Nimoth, Jan;Birnstock, Jan;Wellmann, Philipp;Romainczyk, Tilmann;Lux, Andrea;Limmert, Michael;Zeika, Olaf
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1692-1696
    • /
    • 2006
  • Dopant and host molecules for charge transport layer in OLED have been developed. They enable implementation of the PIN OLED technology in mass production. We review the status of PIN OLED with main focus on top-emission structures and operation stability at elevated temperatures. A green phosphorescent top-emission device with 2.5 V operating voltage and 90 lm/W at 1000 $cd/m^2$ is presented. For a red top-emission device, lifetime exceeding 100,000 h at 500 $cd/m^2$ initial brightness is reported. Operational stability at $80^{\circ}C$ has been investigated. A lifetime of 17,000 h at 500 $cd/m^2$ has been achieved. Finally, we comment on further reduction of the operating voltage in OLED.

  • PDF