• Title/Summary/Keyword: a posteriori error estimation

Search Result 50, Processing Time 0.023 seconds

An adaptive X-FEM and its application to shape optimization (적응 확장 유한요소기법과 형상최적설계로의 응용)

  • Yu, Yong-Gyun;Huh, Jae-Sung;Tezuka, Akira;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.538-543
    • /
    • 2007
  • A procedure is proposed to generate optimal grid with minimal user intervention while keeping a prescribed level of accuracy, using an adaptive X-FEM and applied to shape optimization. In spite of various advantages of X-FEM, however, there are several obstacles for practical applications. Because of using a uniform background mesh and additional degree of freedoms for enrichment, an X-FEM is usually computationally more expensive than traditional finite element method. Furthermore, there are often accuracy problems. For an automatic procedure of optimal mesh generation, an h-adaptive scheme and a posteriori error estimation obtained by a post-processing process are utilized. The procedure is shown by 2-D shape optimization examples.

  • PDF

Improved Super-Resolution Algorithm using MAP based on Bayesian Approach

  • Jang, Jae-Lyong;Cho, Hyo-Moon;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.35-37
    • /
    • 2007
  • Super resolution using stochastic approach which based on the Bayesian approach is to easy modeling for a priori knowledge. Generally, the Bayesian estimation is used when the posterior probability density function of the original image can be established. In this paper, we introduced the improved MAP algorithm based on Bayesian which is stochastic approach in spatial domain. And we presented the observation model between the HR images and LR images applied with MAP reconstruction method which is one of the major in the SR grid construction. Its test results, which are operation speed, chip size and output high resolution image Quality. are significantly improved.

  • PDF

Adaptive Mesh Generation in Large Deformation Analysis of Shell Structures with Advancing Front Method (Advancing Front Method를 이용한 대변형 쉘 구조물의 적응적 유한요소 자동생성법)

  • 장창두;정진우;문성춘
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.447-455
    • /
    • 1999
  • An adaptive mesh generation scheme is developed for effective non-linear analysis of the shell structures under large deformation. In particular, based on a posteriori error estimation, remeshing method on each load step is of primary interest here. An advancing front method, called paving method, is adopted for remeshing. It can be known that the adaptive mesh generation using contours of spacing values obtained from stress errors has an advantage in the adaptive analysis of the shell structures.

  • PDF

A study on the Pattern Recognition of the EMG signals using Neural Network and Probabilistic modal for the two dimensional Motions described by External Coordinate (신경회로망과 확률모델을 이용한 2차원운동의 외부좌표에 대한 EMG신호의 패턴인식에 관한 연구)

  • Jang, Young-Gun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.65-70
    • /
    • 1991
  • A hybrid model which uses a probabilistic model and a MLP(multi layer perceptron) model for pattern recognition of EMG(electromyogram) signals is proposed in this paper. MLP model has problems which do not guarantee global minima of error due to learning method and have different approximation grade to bayesian probabilities due to different amounts and quality of training data, the number of hidden layers and hidden nodes, etc. Especially in the case of new test data which exclude design samples, the latter problem produces quite different results. The error probability of probabilistic model is closely related to the estimation error of the parameters used in the model and fidelity of assumtion. Generally, it is impossible to introduce the bayesian classifier to the probabilistic model of EMG signals because of unknown priori probabilities and is estimated by MLE(maximum likelihood estimate). In this paper we propose the method which get the MAP(maximum a posteriori probability) in the probabilistic model by estimating the priori probability distribution which minimize the error probability using the MLP. This method minimize the error probability of the probabilistic model as long as the realization of the MLP is optimal and approximate the minimum of error probability of each class of both models selectively. Alocating the reference coordinate of EMG signal to the outside of the body make it easy to suit to the applications which it is difficult to define and seperate using internal body coordinate. Simulation results show the benefit of the proposed model compared to use the MLP and the probabilistic model seperately.

  • PDF

Despeckling and Classification of High Resolution SAR Imagery (고해상도 SAR 영상 Speckle 제거 및 분류)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.455-464
    • /
    • 2009
  • Lee(2009) proposed the boundary-adaptive despeckling method using a Bayesian model which is based on the lognormal distribution for image intensity and a Markov random field(MRF) for image texture. This method employs the Point-Jacobian iteration to obtain a maximum a posteriori(MAP) estimate of despeckled imagery. The boundary-adaptive algorithm is designed to use less information from more distant neighbors as the pixel is closer to boundary. It can reduce the possibility to involve the pixel values of adjacent region with different characteristics. The boundary-adaptive scheme was comprehensively evaluated using simulation data and the effectiveness of boundary adaption was proved in Lee(2009). This study, as an extension of Lee(2009), has suggested a modified iteration algorithm of MAP estimation to enhance computational efficiency and to combine classification. The experiment of simulation data shows that the boundary-adaption results in yielding clear boundary as well as reducing error in classification. The boundary-adaptive scheme has also been applied to high resolution Terra-SAR data acquired from the west coast of Youngjong-do, and the results imply that it can improve analytical accuracy in SAR application.

An Integrated Design Process for Manufacturing and Multidisciplinary Design Under System Uncertainty

  • Byeng Dong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.61-68
    • /
    • 2004
  • Necessity to address engineering system uncertainties in design processes has long been acknowledged. To obtain quality of product, a safety factor is traditionally used by many design engineers due to its easy of use and comprehension. However, the safety factor approach often yields either conservative or unreliable designs, since it ignores the type of probability distribution and the mechanism of uncertainty propagation from the input to the output. For a consistent reliability-based design, two fundamental issues must be investigated thoroughly. First, the design-decision process that clearly identifies a mechanism of uncertainty propagation under system uncertainties needs to be developed, which must be an efficient and accurate process. To identify the mechanism more effectively, an adaptive probability analysis is proposed by adaptively setting probability levels through a posteriori error estimation. The second is to develop the design process that not only yields a high quality design but also a cost-effective optimum design from manufacturing point of view. As a result, a response surface methodology is specially developed for RBDO, thus enhancing numerical challenges of efficiency and complicatedness. Side crashworthiness application is used to demonstrate the integrated design process for product and manufacturing process design.

Three-Dimensional Image Reconstruction from Compton Scattered Data Using the Row-Action Maximum Likelihood Algorithm (행작용 최대우도 알고리즘을 사용한 컴프턴 산란 데이터로부터의 3차원 영상재구성)

  • Lee, Mi-No;Lee, Soo-Jin;Nguyen, Van-Giang;Kim, Soo-Mee;Lee, Jae-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.56-65
    • /
    • 2009
  • Compton imaging is often recognized as a potentially more valuable 3-D technique in nuclear medicine than conventional emission tomography. Due to inherent computational limitations, however, it has been of a difficult problem to reconstruct images with good accuracy. In this work we show that the row-action maximum likelihood algorithm (RAMLA), which have proven useful for conventional tomographic reconstruction, can also be applied to the problem of 3-D reconstruction of cone-beam projections from Compton scattered data. The major advantage of RAMLA is that it converges to a true maximum likelihood solution at an order of magnitude faster than the standard expectation maximiation (EM) algorithm. For our simulations, we first model a Compton camera system consisting of the three pairs of scatterer and absorber detectors placed at x-, y- and z-axes, and generate conical projection data using a software phantom. We then compare the quantitative performance of RAMLA and EM reconstructions in terms of the percentage error. The net conclusion based on our experimental results is that the RAMLA applied to Compton camera reconstruction significantly outperforms the EM algorithm in convergence rate; while computational costs of one iteration of RAMLA and EM are about the same, one iteration of RAMLA performs as well as 128 iterations of EM.

A Study on Adaptive Model Updating and a Priori Threshold Decision for Speaker Verification System (화자 확인 시스템을 위한 적응적 모델 갱신과 사전 문턱치 결정에 관한 연구)

  • 진세훈;이재희;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.20-26
    • /
    • 2000
  • In speaker verification system the HMM(hidden Markov model) parameter updating using small amount of data and the priori threshold decision are crucial factor for dealing with long-term variability in people voices. In the paper we present the speaker model updating technique which can be adaptable to the session-to-intra speaker variability and the priori threshold determining technique. The proposed technique decreases verification error rates which the session-to-session intra-speaker variability can bring by adapting new speech data to speaker model parameter through Baum Welch re-estimation. And in this study the proposed priori threshold determining technique is decided by a hybrid score measurement which combines the world model based technique and the cohen model based technique together. The results show that the proposed technique can lead a better performance and the difference of performance is small between the posteriori threshold decision based approach and the proposed priori threshold decision based approach.

  • PDF

p-Adaptive Analysis by Three Dimensional Hierarchical Hexahedral Solid Element (3차원 계층적 육면체 고체요소에 의한 p-적응적 해석)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Shin, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents a finite element formulation for the three-dimensional hierarchical solid element using Integrals of Legendre polynomials. The proposed hexahedral solid element is composed of four different modes including vertex, edge, face, and internal mode, respectively. The eigenvalue and patch test have been carried out to confirm the zero-energy mode and constant strain condition. In addition to these, a posteriori error estimation has been studied for the p-adaptive finite element analysis that is based on a smoothing technique to compute a post-processed solution from the finite element solution. The uniform p-refinement and non-uniform p-refinement are compared in terms of convergence rate as the number of degree of freedom is increased. The simple cantilever beam is tested to show the performance of the proposed solid element.

  • PDF

Automatic Segmentation of Renal Parenchyma using Graph-cuts with Shape Constraint based on Multi-probabilistic Atlas in Abdominal CT Images (복부 컴퓨터 단층촬영영상에서 다중 확률 아틀라스 기반 형상제한 그래프-컷을 사용한 신실질 자동 분할)

  • Lee, Jaeseon;Hong, Helen;Rha, Koon Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2016
  • In this paper, we propose an automatic segmentation method of renal parenchyma on abdominal CT image using graph-cuts with shape constraint based on multi-probabilistic atlas. The proposed method consists of following three steps. First, to use the various shape information of renal parenchyma, multi-probabilistic atlas is generated by cortex-based similarity registration. Second, initial seeds for graph-cuts are extracted by maximum a posteriori (MAP) estimation and renal parenchyma is segmented by graph-cuts with shape constraint. Third, to reduce alignment error of probabilistic atlas and increase segmentation accuracy, registration and segmentation are iteratively performed. To evaluate the performance of proposed method, qualitative and quantitative evaluation are performed. Experimental results show that the proposed method avoids a leakage into neighbor regions with similar intensity of renal parenchyma and shows improved segmentation accuracy.