• Title/Summary/Keyword: a on-line fault diagnosis

Search Result 94, Processing Time 0.023 seconds

Design of fault diagnostic system by using extended fuzzy cognitive map (확장된 퍼지인식맵을 이용한 고장진단 시스템의 설계)

  • 이쌍윤;김성호;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.860-863
    • /
    • 1997
  • FCM(Fuzzy Cognitive Map) is a fuzzy signed directed graph for representing causal reasoning which has fuzziness between causal concepts. Authors have already proposed FCM-based fault diagnostic scheme. However, the previously proposed scheme has the problem of lower diagnostic resolution. In order to improve the diagnostic resolution, a new diagnostic scheme based on extended FCM which incorporates the concept of fuzzy number into FCM is developed in this paper. Furthermore, an enhanced TAM(Temporal Associative Memory) recall procedure and pattern matching scheme are also proposed.

  • PDF

MUSIC-based Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors Using Flux Signal

  • Youn, Young-Woo;Yi, Sang-Hwa;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.288-294
    • /
    • 2013
  • The diagnosis of motor failures using an on-line method has been the aim of many researchers and studies. Several spectral analysis techniques have been developed and are used to facilitate on-line diagnosis methods in industry. This paper discusses the first application of a motor flux spectral analysis to the identification of broken rotor bar (BRB) faults in induction motors using a multiple signal classification (MUSIC) technique as an on-line diagnosis method. The proposed method measures the leakage flux in the radial direction using a radial flux sensor which is designed as a search coil and is installed between stator slots. The MUSIC technique, which requires fewer number of data samples and has a higher detection accuracy than the traditional fast Fourier transform (FFT) method, then calculates the motor load condition and extracts any abnormal signals related to motor failures in order to identify BRB faults. Experimental results clearly demonstrate that the proposed method is a promising candidate for an on-line diagnosis method to detect motor failures.

A Study on the Design of Fault-Diagnosis System for Healing Mill Bearing in Wavelet Transform (웨이브렛 변환을 이용한 압연기 베어링 고장-진단 시스템 설계에 관한 연구)

  • 배영철;김이곤;최남섭;김경민;정양희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.951-961
    • /
    • 2000
  • A diagnosis system that provides early warnings regarding machine malfunction is very important for rolling mill so as to avoid great losses resulting from unexpected shutdown of the production line. But it is very difficult to provide early warnings in rolling mill. Because dynamics of rolling mill is non-linear. This Paper proposes a new method for diagnosis of rolling mill using wavelet transform(W) to solve this problem. Proposed method that measures the vibration signals of rolling mill on-line and analyze it using wavelet to acquire pattern data. And we design a fault-diagnosis system that diagnose a rolling mill using this data. Validity of the new method is asserted by real numerical data experiment.

  • PDF

ADAPTIVE FDI FOR AUTOMOTIVE ENGINE AIR PATH AND ROBUSTNESS ASSESSMENT UNDER CLOSED-LOOP CONTROL

  • Sangha, M.S.;Yu, D.L.;Gomm, J.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.637-650
    • /
    • 2007
  • A new on-line fault detection and isolation(FDI) scheme has been proposed for engines using an adaptive neural network classifier; this paper investigates the robustness of this scheme by evaluating in a wide range of operational modes. The neural classifier is made adaptive to cope with the significant parameter uncertainty, disturbances, and environmental changes. The developed scheme is capable of diagnosing faults in the on-line mode and can be directly implemented in an on-board diagnosis system(hardware). The robustness of the FDI for the closed-loop system with crankshaft speed feedback is investigated by testing it for a wide range of operational modes, including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all changes occurring simultaneously. The evaluations are performed using a mean value engine model(MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.

Fault Diagnosis and Performance Evaluation of Auxiliary Block for Korean High-Speed Railway (한국형 고속열차 보조전원장치 고장진단과 성능평가)

  • Kim, Seog-Won;Kim, Ki-Hwan;Kim, Sang-Soo;Koo, Hun-Mo;Joo, Hyun-Wook;Han, Young-Jae
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.612-617
    • /
    • 2006
  • As the on-board electric devices determine the performances of vehicles, production of reliable devices is important. To keep the reliability of devices constant, management of performance evaluation of the on-board devices is crucial. Because temperature has a serious effect on failures of the components of the devices, its measurement is the first step for good management. In this study, we described performance characteristics of domestic auxiliary block developed through G7 project. We measured the performances of auxiliary block during test running by the developed on-line measurement system. After we save the input real-time data from each signal of Korean High Speed Train through the network line, we can acquire necessary information through post-processing program. We verify the motor block characteristics of Korean High Speed Train by this system.

A Study on Fuzzy Expert System for the Fault Diagnosis of Hard Disk Drive Test System (Hard Disk Drive 검사 시스템의 고장 전단용 퍼지 전문가 시스템에 관한 연구)

  • Mun, Un-Cheol;Gwon, Hyeon-Tae;Nam, Chang-U
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.625-628
    • /
    • 2003
  • This paper proposes a fuzzy expert system for the fault diagnosis of Hard Disk Drive(HDD) test systems. The purposes of this system are diagnosis of HDD test systems, detection of system faults using test history, and presentation of the way of repair. Proposed Expert system is designed with Fuzzy logic and Binary Logic to present the way of repair using HDD tort result, HDD test history. The proposed system is simulated with actual data from SAMSUNG HDD product line in KUMI, KOREA, and show effective results.

  • PDF

Interturn Fault Diagnosis Method of Induction Motor by Impedance Magnitude Comparison (임피던스 크기 비교를 통한 유도모터 턴쇼트 고장진단법)

  • Gu, Bon-Gwan;Park, Joon Sung;Kong, Tae-Sik;Kim, Taewon;Park, Taejoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.144-152
    • /
    • 2017
  • A motor model and off-line diagnosis method of the induction motor having an interturn fault(ITF) is studied. The proposed method is based on the magnitude comparison of the six impedance in the d-q plane. To prove the impedance unbalance, the induction motor model is presented with an ITF circuit loop with a fault resistance. Then, six impedance components in the stationary d-q plane are defined depending on the connected phase windings. Finding the maximum and minimum magnitude of the six impedance, the ITF and the faulty phase can be founded. To verify the proposed method, the experimental results with an induction motor having an ITF are shown.

Stator winding faults diagnosis system of induction motor using LabVIEW (LabVIEW를 이용한 유도전동기 고정자 권선 고장진단시스템)

  • Song, Myung-Hyun;Park, Kyu-Nam;Lee, Tae-Hun;Han, Dong-Gi;Park, Kyung-Han
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2658-2660
    • /
    • 2005
  • This paper presents a stator winding fault diagnosis technique of induction motor on the PC - based virtual instrumentation system designed using the graphical programming language LabVIEW. This method collects the 3-phase current signals using the current probe amplifier and PXI/DAQ system then the preprocessing removes the noise using LPF, after then this method transforms the stator current to Park's vector and obtains the each Park's Vector pattern and detects stator winding fault by comparing the obtained faulted pattern with the healthy pattern. This proposed LabVIEW based diagnosis system is applied to the 3 phase 1 hp induction motor and obtained the reasonable results under no load condition. The test results give us the possibility a simple and realistic on-line winding fault diagnosis system.

  • PDF

Identification of Fuzzy Dynamic Model for Fault Diagnosis of Nonlinear System (비선형계통 고장진단을 위한 온-라인 퍼지동적모델 식별)

  • 이종렬;배상욱;이기상;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.204-210
    • /
    • 1998
  • This paper discusses an on-line fuzzy dynamic model(FDM) identification of nonlinear processes for the design of fuzzy model based fault detection and isolation(FDI). The dynamic behavior of a nonlinear process is represented by a fuzzy aggregation of a set of local linear models. The identification is divided into two procedures. The first is the off-line identification of membership function. The second is the on-line identification of the local linear models. Then, we propose a residual generation scheme based on the parameters of local linear models and show that the scheme can be used for the design of FDI

  • PDF

Characteristics and Fault Analysis of Electric Devices for High-Speed Railway using Control Signal (제어 신호를 이용한 고속철도 전장품의 특성 및 고장 분석)

  • Han, Young-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1128-1133
    • /
    • 2006
  • The most important thing to secure safety and reliability of railway vehicles is to verify performance characteristics of equipments, and related companies or research institutes had many efforts to verify performances and functions of equipments synthetically and efficiently. KHST(Korean High Speed Train) has been developed by KRRI (Korea Railroad Research Institute). An electric railway system is composed of high-tech subsystems, among which main electric equipment such as transformers and converter are critical components determining the performance of rolling stock. We developed a measurement system for on-line test and evaluation of performances of KHST. The measurement system is composed of software part and hardware part. Perfect interface between multi-users is possible. A new method to measure temperature was applied to the ]measurement system. By using the system, fault diagnosis and performance evaluation of electric equipment in Korean High Speed Train was conducted during test running.