• Title/Summary/Keyword: a non-linear system

Search Result 1,636, Processing Time 0.035 seconds

The System of Non-Linear Detector over Wireless Communication (무선통신에서의 Non-Linear Detector System 설계)

  • 공형윤
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.106-109
    • /
    • 1998
  • Wireless communication systems, in particular, must operate in a crowded electro-magnetic environmnet where in-band undesired signals are treated as noise by the receiver. These interfering signals are often random but not Gaussian Due to nongaussian noise, the distribution of the observables cannot be specified by a finite set of parameters; instead r-dimensioal sample space (pure noise samples) is equiprobably partitioned into a finite number of disjointed regions using quantiles and a vector quantizer based on training samples. If we assume that the detected symbols are correct, then we can observe the pure noise samples during the training and transmitting mode. The algorithm proposed is based on a piecewise approximation to a regression function based on quantities and conditional partition moments which are estimated by a RMSA (Robbins-Monro Stochastic Approximation) algorithm. In this paper, we develop a diversity combiner with modified detector, called Non-Linear Detector, and the receiver has a differential phase detector in each diversity branch and at the combiner each detector output is proportional to the second power of the envelope of branches. Monte-Carlo simulations were used as means of generating the system performance.

  • PDF

Nonfragile Guaranteed Cost Controller Design for Uncertain Large-Scale Systems (섭동을 갖는 대규모 시스템의 비약성 성능보장 제어기 설계)

  • Park, Ju-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.503-509
    • /
    • 2002
  • In this paper, the robust non-fragile guaranteed cost control problem is studied for a class of linear large-scale systems with uncertainties and a given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design a state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties and controller gain variations. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. A numerical example is given to illustrate the proposed method.

Collapse behaviour of three-dimensional brick-block systems using non-linear programming

  • Baggio, Carlo;Trovalusci, Patrizia
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.181-195
    • /
    • 2000
  • A two-step procedure for the application of non linear constrained programming to the limit analysis of rigid brick-block systems with no-tension and frictional interface is implemented and applied to various masonry structures. In the first step, a linear problem of programming, obtained by applying the upper bound theorem of limit analysis to systems of blocks interacting through no-tension and dilatant interfaces, is solved. The solution of this linear program is then employed as initial guess for a non linear and non convex problem of programming, obtained applying both the 'mechanism' and the 'equilibrium' approaches to the same block system with no-tension and frictional interfaces. The optimiser used is based on the sequential quadratic programming. The gradients of the constraints required are provided directly in symbolic form. In this way the program easily converges to the optimal solution even for systems with many degrees of freedom. Various numerical analyses showed that the procedure allows a reliable investigation of the ultimate behaviour of jointed structures, such as stone masonry structures, under statical load conditions.

A Study on Prediction of Propulsive Energy Loss Related to Automatic Steering of Ships in Following Seas (추사피중에서 자동조타로써 항행하는 선박의 추진에너지 손실량 평가에 관한 연구)

  • 이경우;손경호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.04a
    • /
    • pp.77-92
    • /
    • 1996
  • When an automatic course-keeping is concerned as is quite popular in modern navigation the closed-loop steering system consists of autopilot device power unit (or telemotor unit) steering gear magnetic or gyro compass and ship dynamics. The consideration of irregular disturbances to ship dyanmics and a few non-linear mechanisms involved in the system inevitably or artificially are known to be very important in properly evaluating or analyzing the automatic steering system. In the present study the mathematical model of each element of an automatic steering system is derived which takes account of a fex non-linear mechanisms. PD(Proportional-Derivative) controller and low-pass filter with a weather adjustment are adopted to modelling the characteristics of an autopilot. The calculation method of imposing irregular disturbances to ship dynamics is proposed where irregular disturbances implying irregular wave and the fluctuating component of wind. For he evaluation of automatic steering system of ships in the open seas an important term "performance index" is introduced from the viewpoint of energy saving which derived from the concept of energy loss on ship propulsion. Finally the present methods are applied to two typical types of ship ; an ore carrier and a fishing boat. The various effects of linear and/or non-linear control constants of autopilot on propulsive energy loss are investigated to validate and clarify the present smulation technique.

  • PDF

Free vibrations of fluid conveying microbeams under non-ideal boundary conditions

  • Atci, Duygu;Bagdatli, Suleyman Murat
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • In this study, vibration analysis of fluid conveying microbeams under non-ideal boundary conditions (BCs) is performed. The objective of the present paper is to describe the effects of non-ideal BCs on linear vibrations of fluid conveying microbeams. Non-ideal BCs are modeled as a linear combination of ideal clamped and ideal simply supported boundary conditions by using the weighting factor (k). Non-ideal clamped and non-ideal simply supported beams are both considered to show the effects of BCs. Equations of motion of the beam under the effect of moving fluid are obtained by using Hamilton principle. Method of multiple scales which is one of the perturbation techniques is applied to the governing linear equation of motion. Approximate solutions of the linear equation are obtained and the effects of system parameters and non-ideal BCs on natural frequencies are presented. Results indicate that, natural frequencies of fluid conveying microbeam changed significantly by varying the weighting factor k. This change is more remarkable for clamped microbeams rather than simply supported ones.

Development of Analysis System for Asphalt Pavement Structures under Various Vehicle Speeds (차량 주행속도를 고려한 아스팔트 포장구조체의 해석시스템 구축)

  • Kim, Soo-Il;Seo, Joo-Won;Yoo, Young-Gyu;Choi, Jun-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.552-561
    • /
    • 2006
  • The purpose of this study is to propose a pavement analysis system which considers dynamic effects resulted from the various vehicle speeds. Vehicle loading effects were estimated by loading frequency and dynamic loads under various vehicle speeds. In addition, a proposed analysis model takes the non-linear temperature using a predictive model for dynamic modulus in asphalt layer and the non-linear stress in the unbound material. To examine adequacy of existing multi-layer elastic analysis of non-linear temperature in asphalt layer and non-linear stress conditions in unbound material, this study divided layers of asphalt pavement structures with 10 layers in asphalt, 2 layers in subbase and 1 layer in subgrade. In order to verify the pavement analysis system that considers various speeds, deflections of pavement calculated using ABAQUS, a three dimensional finite element program, were compared with the results of field tests under various speeds.

  • PDF

Correction of the Approximation Error in the Time-Stepping Finite Element Method

  • Kim, Byung-Taek;Yu, Byoung-Hun;Choit, Myoung-Hyun;Kim, Ho-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.229-233
    • /
    • 2009
  • This paper proposes a correction method for the error inherently created by time-step approximation in finite element analysis (FEA). For a simple RL and RLC linear circuit, the error in time-step analysis is analytically investigated, and a correction method is proposed for a non-linear system as well as a linear one. Then, for a practical inductor model, linear and non-linear time-step analyses are performed and the calculation results are corrected by the proposed methods. The accuracy of the corrected results is confirmed by comparing the electric input and output powers.

Design of Hierarchically Structured Clustering Algorithm and its Application (계층 구조 클러스터링 알고리즘 설계 및 그 응용)

  • Bang, Young-Keun;Park, Ha-Yong;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.17-23
    • /
    • 2009
  • In many cases, clustering algorithms have been used for extracting and discovering useful information from non-linear data. They have made a great effect on performances of the systems dealing with non-linear data. Thus, this paper presents a new approach called hierarchically structured clustering algorithm, and it is applied to the prediction system for non-linear time series data. The proposed hierarchically structured clustering algorithm (called HCKA: Hierarchical Cross-correlation and K-means clustering Algorithms) in which the cross-correlation and k-means clustering algorithm are combined can accept the correlationship of non-linear time series as well as statistical characteristics. First, the optimal differences of data are generated, which can suitably reveal the characteristics of non-linear time series. Second, the generated differences are classified into the upper clusters for their predictors by the cross-correlation clustering algorithm, and then each classified differences are classified again into the lower fuzzy sets by the k-means clustering algorithm. As a result, the proposed method can give an efficient classification and improve the performance. Finally, we demonstrates the effectiveness of the proposed HCKA via typical time series examples.

  • PDF

Design of A Robust Adaptive Controller for A Class of Uncertain Non-linear Systesms with Time-delay Input

  • Nguyen, Thi-Hong-Thanh;Cu, Xuan-Thinh;Nguyen, Thi-Minh-Huong;Ha, Thi-Hoan;Nguyen, Dac-Hai;Tran, Van-Truong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1955-1959
    • /
    • 2005
  • This paper presents a systematic analysis and a simple design of a robust adaptive control law for a class of non linear systems with modeling errors and a time-delay input. The theory for designing a robust adaptive control law based on input- output feedback linearization of non linear systems with uncertainties and a time-delay in the manipulated input by the approach of parameterized state feedback control is presented. The main advantage of this method is that the parameterized state feedback control law can effectively suppress the effect of the most parts of nonlinearities, including system uncertainties and time-delay input in the pp-coupling perturbation form and the relative order of non linear systems is not limited.

  • PDF

Optimal Controller for Near-Space Interceptor with Actuator Saturation

  • Fan, Guo-Long;Liang, Xiao-Geng;Hou, Zhen-Qian;Yang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.256-263
    • /
    • 2013
  • The saturation of the actuator impairs the response performance of the near space interceptor control system. A control system based on the properties of linear tracking system is designed for this problem. The properties are that the maximum value of the pseudo-Lyapunov function of the linear tracking control system do not present at the initial state but at the steady state, based on which the bounded stability problem is converted into linear tracking problem. The pseudo-Lyapunov function of the linear tracking system contain the input variables; the amplitude and frequency of the input variables affect the stability of the nonlinear control system. Designate expected closed-loop poles area for different input commands and obtain a controller which is function of input variables. The coupling between variables and linear matrices make the control system design problem non-convex. The non-convex problem is converted into a convex LMI according to the Shur complement lemma and iterative algorithm. Finally the simulation shows that the designed optimal control system is quick and accurate; the rationality of the presented design techniques is validated.