• 제목/요약/키워드: a new concept of stability

검색결과 167건 처리시간 0.034초

채터링 없는 슬라이딩 모드를 이용한 로봇 매니퓰레이터의 제어 (Control of Robot Manipulators Using Chattering-Free Sliding Mode)

  • 이규준;경태현;김종식
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.357-364
    • /
    • 2002
  • A new chattering free sliding made control is proposed for robot manipulators. The control input is derived from the reaching law and the Lyapunov stability criteria, which is only composed of continuous terms. It has a chattering free characteristics and a concise farm. In implementing procedures, no change of equations is needed. Thus, it does not degrade the original merits of the sliding mode control. And it is applied to a 2-link SCARA robot manipulator. It is shown that the proposed control has good trajectory tracking performance compared with the PD control and the conventional sliding mode control which uses the boundary layer concept.

생체신호 측정을 통한 운전자의 감정적 안정상태 평가 (Assessment of Driver's Emotional Stability by Using Bio-signals)

  • 김정룡;박지수;윤상영
    • 대한인간공학회지
    • /
    • 제30권1호
    • /
    • pp.203-211
    • /
    • 2011
  • Objective: The aim of this study is to introduce a methodology to assess driver's emotion stability by using bio-signals. Background: Psychophysiological analysis of driver's behavior has been conducted to improve the driving safety and comfort. However, the variability of bio-signal and individual difference made it difficult to assess the psychophysiological status of drivers that can be expressed as emotional stability of drivers. Method: Two experimental studies were reviewed and summarized. New techniques assessing emotional stability of drivers were explained. Statistical concept and multidimensional space were used to identify the emotionally stable conditions. Conclusion: Psychophysiological approach can provide information of driver's emotional status. The experimental methodology and algorithm used in this study showed the possibility of parameterization of psychophysiological response. Application: Currently measured statistical and geometrical data can be further applied to develop an interactive device monitoring and reacting driver's emotion when driver experiences emotionally unstable or uncomfortable situation.

The Numerical Modeling and Sliding Mode Control of A New Submersible Fish Cage

  • Lee, Hyunsu;Won, Sung Jae;Ahn, Kyoung Kwan
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권3호
    • /
    • pp.18-24
    • /
    • 2017
  • The purpose of this paper is to develop a new submersible fish cage operated by a pneumatic system for offshore aquaculture. Although some researchers have investigated modeling and control of fish cages, such cages consist of variable ballast tanks that with closed cylinders and thus present a maintenance issue. In solving the issue the new submersible fish cage investigated consists of bottom-opening cylinders. Accordingly, we designed a mathematical model of the concept and applied Sliding Mode Control for nonlinear angle control. Some experiments conducted under assumed conditions indicate that the angle of the system converges to zero under all conditions and the control has the stability to balance the fish cage.

Design and Analysis of Dynamic Positioning System Using a Nonlinear Robust Observer

  • Kim, Myung-Hyun
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제5권1호
    • /
    • pp.46-52
    • /
    • 2002
  • A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. The main advantage of the proposed observer is in its robustness. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertainties. Since the mathematical model of DP ships is difficult to obtain and includes uncertainties and disturbances, it is very important for the observer to be robust. A nonlinear output feedback controller is derives based on the developed observer using the observer backstepping technique, and the global stability of the observer and control law is shown by Lyapunov stability theory.. A set of simulation was carried out to investigate the performance of the proposed observer for dynamic positioning of ships.

  • PDF

LED를 이용한 감성조명디자인 개발 연구 - 토요 이토 건축의 관계성 개념을 중심으로 - (Study on the Development of Sensitivity Lighting Design Using LED - Focused on the Concept of Relationship in Toyo Ito's Architecture -)

  • 김종서
    • 한국가구학회지
    • /
    • 제28권4호
    • /
    • pp.332-339
    • /
    • 2017
  • Today, our indoor space requires a user-centered considering design that satisfies even human sensitivity. The word 'sensitivity' is being frequently used in the design market recently and this means that consumers are becoming more sensitive. For this reason, the characteristics of Toyo Ito's architecture, which are innocent due to its natural structure and materials, are suggested as a sensitive lighting stand design which can relieve users' stress from daily life and bring a psychological stability. As such, sensitivity lighting can create a lighting environment that considers consumers in various spaces along with the development of new scientific technologies and develop in a new direction of aesthetical beauty and eco-friendly area. In this study, a natural and sensitive lighting stand is suggested where a variety of digital art techniques of LED are applied based on formative characteristics of relationship, one of Toyo Ito's architectural concept factors. Such sensitivity lighting designs can not only realize a type-free design but also suggest a creation of the atmosphere which is close to nature.

Effective length factor for columns in braced frames considering axial forces on restraining members

  • Mahini, M.R.;Seyyedian, H.
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.685-700
    • /
    • 2006
  • The effective length factor is a familiar concept for practicing engineers and has long been an approach for column stability evaluations. Neglecting the effects of axial force in the restraining members, in the case of sway prevented frames, is one of the simplifying assumptions which the Alignment Charts, the conventional nomographs for K-Factor determination, are based on. A survey on the problem reveals that the K-Factor of the columns may be significantly affected when the differences in axial forces are taken into account. In this paper a new iterative approach, with high convergence rate, based on the general principles of structural mechanics is developed and the patterns for detection of the critical member are presented and discussed in details. Such facilities are not available in the previously presented methods. A constructive methodology is outlined and the usefulness of the proposed algorithm is illustrated by numerical examples.

Reactive Reserve based Contingency Constrained Optimal Power Flow to Enhance Interface Flow Limits in Terms of voltage Stability

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • 제11A권4호
    • /
    • pp.27-32
    • /
    • 2001
  • This paper presents a concept of reactive reserve based contingency constrained optimal power flow (RCCOPF). RCCOPF for enhancement of interface flow limit is composed of two modules, which are the modified continuation power flow (MCPF) and reactive optimal power flow (ROPF). In RCCOPF, two modules are repeatedly performed to increase interface flow margins of selected contingent states until satisfying the required enhancement of interface flow limit. In numerical simulation, a simple example with New England 39-bus test system is shown.

  • PDF

선박용 유압 조타 시스템의 구조적 안전성 평가 (Structural Safety Evaluation of Hydraulic Steering System for Ship)

  • 이문희;손인수;양창근
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.661-667
    • /
    • 2020
  • The optimal shape modeling of core parts through 3D modeling and structural analysis for the development of small and medium-sized ships. The goal is to improve the efficient structure of the hydraulic system for controlling the rudder among the core steering parts in small and medium-sized ships. Through 3D modeling and structural analysis, a new concept of tiller parts and a double-acting hydraulic cylinder control system were proposed and operational structural stability was evaluated. Structural analysis of the three different tiller designs that can be replaceable onto existing fishing vessels was conducted to derive the final shapes. The emphasis was placed on evaluating the structural stability of the key drive components, the tiller, pin, and cylinder rodin the maximum torque condition of the hydraulic cylinder.

강인한 직접 적응 퍼지 제어기 (Robust Direct Adaptive Fuzzy Controller)

  • 김용태;변증남
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.199-203
    • /
    • 1997
  • In this paper is proposed a new direct adaptive fuzzy controller that dan ve applied for tracking control of a class of uncertain nonlinear SISO systems. It is shown that, in the presence of the perturbations such as fuzzy approximation error and external disturbance, boundedness of all the signals in the system is ensured, while under the assumption of no perturbations, the stability of the overall system in guaranteed. Also, the concept of persistent excitation in the adaptive fuzzy control systems is introduced to guarantee the convergence and the boundedness of adaptation parameter in the proposed controllers. Simulation example shows the effectiveness of the proposed method in the presence of fuzzy approximation error and external disturbance.

  • PDF

A Development of STL-Interfaced Constant-Speed Path Controller

  • Kim, Seungwoo;Minkook Ko;Jaechul Bang
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.2027-2030
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in world- wide some corporations including the U.S.A, have much technological problems yet and need new mode for agile solid freeform fabrication as well as prototyping. In this paper, we design an algorithm that the cutting path of laser beam, on the SFFS, is controlled with constant speed. The designed algorithm fer constant-speed path control is implemented and experimented in the CAFL$\^$VM/ (Computer Aided Fabrication of Lamination for Various Material) system, the new SffS which is developed in this paper. Finally, the ceramic, new material developed in this paper, cut and fabricated. The dimensional accuracy and mechanical stability of the 3D object is confirmed through the experiment, also.

  • PDF