국내 개인신용평가회사들은 과거와 현재 시점의 다양한 금융거래 정보를 활용하여 개인의 신용을 평가하고 있는데, 이 중 과거에 대출을 실행하여 이를 상환 또는 연체한 이력에 대한 정보를 의미하는 '상환이력정보'는 신용평가에 활용되는 다른 항목들에 비해 상대적으로 활용 비중이 높은 항목이다. 그러나 개인이 연체된 채무를 모두 변제하여 현재 연체중인 상태가 아닌 경우에도 과거의 연체 이력이 부정적인 요인으로 최장 5년간 평가에 반영되고 있어 금융소비자에게 과도한 불이익을 준다는 지적이 지속적으로 있어 왔다. 실제로 연체 이력이 있는 개인의 경우, 연체된 채무를 성실하게 변제한 개인(정상변제)과 그렇지 않은 개인(비정상변제)으로 구분할 수 있는데, 이들 간에는 신용도의 차이가 존재하므로 '정상변제'하는 개인의 특징을 확인하여 이들에게 '상환이력정보'의 활용기간을 단축시켜 주는 등의 혜택을 제공하는 것이 바람직하다고 판단된다. 본 연구는 이러한 문제의식에서 출발하여 한국신용정보원에서 보유하고 있는 2019년 12월 말 기준, 개인의 대출·연체·변제 정보에 기반하여 국내 연체경험자의 정상변제 요인을 분석하였다. 방법론은 개인신용평가모형에서 주로 사용하는 로지스틱 회귀모형을 기본으로 하여 의사결정나무, 신경망 모형 등의 머신러닝 방법론을 추가로 활용하였으며, 각 방법론별 성능을 비교해보았다. 실증분석 결과, 연체건수, 대출·연체유형 등이 정상변제 여부에 영향을 미치는 유의한 변수들로 확인되었으며 방법론 중에는 신경망 모형의 성능이 가장 높은 것으로 나타났다. 이러한 연구결과는 연체된 개인 차주의 정상변제 여부에 영향을 미치는 요인을 확인하여 개인신용평가모형을 고도화하는데 도움이 될 수 있을 것으로 보이며 연체 후 성실하게 변제하는 개인을 정책적으로 지원하기 위한 기초자료로도 활용될 수 있을 것으로 보인다. 향후에는 정상변제 요인을 추가 발굴하여 금융업권별 정상변제 요인의 세부적인 차이를 확인하고 이를 실제 모형에 반영하는 연구가 필요할 것이다.
현장 지반정수 데이터는 다양한 현장 및 실내시험을 통해 획득된 후 지반조사보고서의 형태로 작성되어 유통된다. 효율적인 설계 및 시공을 위해선 지반정수의 디지털 데이터베이스화가 필수적이나, 현재 지반조사보고서 데이터는 수동 입력 방식으로 많은 시간과 인력이 소요되며, 오류가 발생하기도 한다. 본 연구는 이미지 기반 딥러닝 모델 및 텍스트 마이닝 기법을 사용하여 지반조사보고서에서 데이터를 자동으로 추출하는 방법을 제안하였다. 딥러닝 기반의 페이지 분류 모델과 텍스트 서칭 알고리즘을 사용하여 지반조사보고서 부록 내 세부 지반시험 결과 보고서를 100%의 정확도로 분류할 수 있었다. 컴퓨터 비전 알고리즘을 통해 보고서 페이지 내 유효한 데이터 영역을 결정하고, 텍스트 분석을 통해 추출 데이터 항목과 상응하는 지반 데이터를 짝지어 데이터를 추출했다. 제안한 모델은 205개의 지반조사 보고서로 구성된 데이터셋을 통해 검증되었으며, 평균 93.0%의 데이터 추출 정확도를 기록하였다. 마지막으로, 추출 모델의 실무 적용성을 위해 사용자 인터페이스 기반 프로그램을 개발하였다. 프로그램 내 사용자 상호작용을 통해 지반조사보고서 PDF 파일을 업로드하고 자동으로 보고서를 분석 및 데이터를 추출, 편집할 수 있도록 했다. 이를 통해 지반조사보고서의 디지털화 및 지반 데이터베이스 구축이 더욱 효율적이고 정확하게 이루어질 수 있을 것으로 판단된다.
본 논문은 지각된 가치가 적용된 관광 행동의도 정보를 이용한 지능형 클라우드 환경에서의 관광추천시스템을 제안한다. 이 제안 시스템은 관광정보와 관광객의 지각적 가치가 행동의도에 반영되는 실증적 분석 정보를 와이드 앤 딥러닝 기술을 이용하여 관광추천시스템에 적용하였다. 본 제안 시스템은 다양하게 수집할 수 있는 관광 정보와 관광객이 평소에 지각하고 있던 가치와 사람의 행동에서 나타나는 의도를 수집 분석하여 관광 추천시스템에 적용하였다. 이는 기존에 활용되던 다양한 분야의 관광플랫폼에 관광 정보, 지각된 가치 및 행동의도에 대한 연관성을 분석하고 매핑하여, 실증적 정보를 제공한다. 그리고 관광정보와 관광객의 지각적 가치가 행동의도에 반영되는 실증적 분석 정보를 선형 모형 구성요소와 신경만 구성요소를 합께 학습하여 한 모형에서 암기 및 일반화 모두를 달성할 수 있는 와이드 앤 딥러닝 기술을 이용한 관광추천 시스템을 제시하였고, 파이프라인 동작 방법을 제시하였다. 본 논문에서 제시한 추천시스템은 와이드 앤 딥러닝 모형을 적용한 결과 관광관련 앱 스토어 방문 페이지 상의 앱 가입률이 대조군 대비 3.9% 향상했고, 다른 1% 그룹에 변수는 동일하고 신경망 구조의 깊은 쪽만 사용한 모형을 적용하여 결과 와이드 앤 딥러닝 모형은 깊은 쪽만 사용한 모형 대비해서 가입률을 1% 증가하였다. 또한, 데이터셋에 대해 수신자 조작 특성 곡선 아래 면적(AUC)을 측정하여, 오프라인 AUC 또한 와이드 앤 딥러닝 모형이 다소 높지만 온라인 트래픽에서 영향력이 더 강하다는 것을 도출하였다.
우리나라 암 발생빈도 중 간암은 위암에 이어 두 번째로 흔한 암으로, 초기에는 특이 증상이나 증후 없이 서서히 진행되는 경우가 많아 증상이 생긴 후 간암으로 진단될 경우, 대부분 마땅한 치료방법이 별로 없어 어떠한 치료를 해도 환자의 예후는 불량하나, 조기에 발견될 경우는 치료성적이 우수하여 조기 발견이 대단히 중요시된다. 본 시스템은 간암의 조기발견을 위한 시스템으로, 간암으로 확진된 환자와 간암이외의 대조군의 혈액을 바이오침에 반응시켜 바이오칩 프로파일을 기계학습을 통해 분류하는 시스템이다. 본 논문에서는 총 50샘플로 구성된 간암환자 와 100샘플로 구성된 간암 이외의 대조군의 혈액시료를 1149의 서로 다른 올리고로 구성된 바이오칩에 반응시켜 획득한 데이터를 인공신경 망을 통해 분석한 결과 $92{\sim}96%$의 분류 성능을 보였다.
각종 감시체계에서 육안에 의존하여 물체를 식별해내는 것은 어렵고 실수하기 쉬우므로 군 감시체계에서 자동식별능력의 필요성은 더욱 높아지고 있다. 사회에 발표되는 모형들은 군 무기체계에 대한 데이터가 반영되지 않아 군에 바로 적용하는 것은 제한된다. 본 연구는 군용 헬기의 이미지에 합성곱 신경망을 적용하여 피아식별 모형을 구축한 연구이다. 제안하는 모형은 우리나라에서 주로 사용하고 있는 헬기인 AH-64 기종과 공산권 국가에서 주로 사용하고 있는 헬기인 Mi-17 기종의 이미지를 통해 학습시켜 구축되었다. 제안하는 모형의 성능을 살펴보면, 평가척도를 이용하여 평가한 결과 97.8%의 정확도, 97.3%의 정밀도, 98.5% 재현율과 97.9%의 F-measure의 성능을 보임을 확인하였다. 이런 분류 결과에 대해서 Feature-map을 통해 아군 헬기의 바퀴와 무장, 그리고 흡기구 주변이, 적군 헬기의 바퀴, 흡기구, 그리고 창문 부위가 피아식별 모형의 분류 기준임을 확인할 수 있었다. 본 연구는 CNN을 이용하여 군 무기체계 중 헬기의 영상정보에 대한 피아식별에 대한 분류를 처음으로 시도한 연구이며, 본 연구에서 제안하는 모형은 기존의 다른 무기체계에 대한 분류 모형보다 높은 정확도를 보인다.
최근 정보기술의 발전으로 복잡하고 방대한 양의 주가 데이터에 대한 실시간 분석이 가능해지면서 인공지능 기법을 활용해 주식 시장의 등락을 예측하고, 이를 기반으로 매매 거래를 수행하는 트레이딩 시스템에 대한 세간의 관심이 높아지고 있다. 본 연구는 이러한 트레이딩 시스템의 시장 예측 알고리즘으로 활용될 수 있는 새로운 주식 시장 등락 예측 모형을 제시한다. 본 연구의 제안 모형은 ${\pi}$-퍼지 논리를 이용해 모든 입력변수의 차원을 low, medium, high로 퍼지변환한 입력값을 대상으로 Support Vector Machine(SVM)을 적용하여 익일 시장의 등락을 예측하도록 설계되었다. 그런데 이 경우 입력변수의 수가 3배로 늘어나기 때문에, 적절한 입력변수의 선택이 요구된다. 이에 본 연구에서는 유전자 알고리즘을 활용하여 입력변수 선택 집합을 최적화하도록 하였으며, 동시에 ${\pi}$-퍼지 논리 및 SVM에 적용되는 조절 파라미터들의 값도 함께 최적화 하도록 하였다. 모형의 성능을 검증하기 위해, 본 연구에서는 지난 2004년부터 2013년까지의 10년치 국내 주식시장 데이터를 기반으로 한 KOSPI 200 지수의 등락 예측에 제안모형을 적용해 보았다. 이 때, 비교모형으로 로지스틱 회귀모형, 다중판별분석, 의사결정나무, 인공신경망, SVM, 퍼지SVM 등도 함께 적용시켜 성과를 정밀하게 검증해 보고자 하였다. 그 결과, 제안모형이 예측 정확도는 물론 투자수익률(Return on Investment) 측면에서도 다른 모든 비교모형들에 비해 월등히 우수한 성능을 보임을 확인할 수 있었다.
도로의 설계 및 운영 등에 필요한 연평균 일 교통량은 365일 조사에 의한 것이 아닌 단기간 조사된 교통량을 사용하는 것으로써 이를 추정하려는 연구는 이전부터 있어왔다. 본 연구에서는 기존 연구를 바탕으로 이 AADT 추정의 방법을 개선시키고자 하였다. 먼저 그룹간의 차이를 뚜렷이 보여줄 수 있는 변수를 찾기 위해 그룹의 수를 변화시켜가며 각 그룹의 시간변 동요인들(전체, 주중, 토요일, 일요일, 주중-토요일, 주중-일요일)의 값을 살펴보아 그 차이가 가장 뚜렷한 변동 요인을 주중-일요일의 시간변동 요인으로 선정하였다. 그 다음 월 변동요인만을 사용하여 상시조사지점을 clustering하였다. 그룹간의 시간변동요인의 차이를 가장 크게 하는 것을 원칙으로 군집분석을 한 결과 10개의 그룹으로 묶을 수 있었다. 선정된 주중-일요일의 시간변동 요인을 사용하여 판별분석과 신경망을 통한 그룹할당을 했다. 신경망의 적중률이 판별분석의 경우보다 훨씬 좋았고, RMSE. U-test 결과도 더 좋았다. 결과를 전체적으로 살펴보면, 본 연구에서 사용한 방법(월 변동요인만을 사용하여 군집분석 한 후, 각 그룹에서 월별로 요일변동요인을 구해 적용한 AADT 추정)의 결과가 이전 연구인 월변동과 요일변동을 이용한 AADT 추정의 결과보다 훨씬 좋았다. 그리고 그룹할당의 변수를 주중-일요일의 시간변동요인으로 달리하였을 때, 신경망의 경우 그룹할당의 적중률이 더 높아지는 것을 볼 수 있었다.
This study used in vivo intracellular recording in rat hippocampus to evaluate the effect of lidocaine and MK-801 on the membrane properties and the synaptic responses of individual neurons to electrical stimulation of the commissural pathway. Cells in control group typically fired in a tonic discharge mode with an average firing frequency of $2.4{\pm}0.9$ Hz. Neuron in MK-801 treated group (0.2 mg/kg, i.p.) had an average input resistance of $3.28{\pm}5.7\;M{\Omega}$ and a membrane time constant of $7.4{\pm}1.8$ ms. These neurons exhibited $2.4{\pm}0.2$ ms spike durations, which were similar to the average spike duration recorded in the neurons of the control group. Slightly less than half of these neurons were firing spontaneously with an average discharge rate of $2.4{\pm}1.1$ Hz. The average peak amplitude of the AHP following the spikes in these groups was $7.4{\pm}0.6$ mV with respect to the resting membrane potential. Cells in MK-801 and lidocaine treated group (5 mg/kg, i.c.v.) had an average input resistance of $3.45{\pm}6.0\;M{\Omega}$ and an average time constant of $8.0{\pm}1.4$ ms. The cells were firing spontaneously at an average discharge rate of $0.6{\pm}0.4$ Hz. Upon depolarization of the membrane by 0.8 nA for 400 ms, all of the tested cells exhibited accommodation of spike discharge. The most common synaptic response contained an EPSP followed by early-IPSP and late-IPSP. Analysis of the voltage dependence revealed that the early-IPSP and late-IPSP were putative $Cl^--and\;K^+-dependent$, respectively. Systemic injection of the NMDA receptor blocker, MK-801, did not block synaptic responses to the stimulation of the commissural pathway. No significant modifications of EPSP, early-IPSP, or late-IPSP components were detected in the MK-801 and/or lidocaine treated group. These results suggest that MK-801 and lidocaine manifest their CNS effects through firing pattern of hippocampal pyramidal cells and neural network pattern by changing the synaptic efficacy and cellular membrane properties.
Duck industry had a rapid growth in recent years. Nevertheless, researches to improve duck house environment are still not sufficient enough. Moisture generation of duck house litter is an important factor because it may cause severe illness and low productivity. However, the measuring process is difficult because it could be disturbed with animal excrements and other factors. Therefore, it has to be calculated according to the environmental data around the duck house litter. To cut through all these procedures, we built several machine learning regression model forecasting moisture generation of litter by measured environment data (air temperature, relative humidity, wind velocity and water contents). 5 models (Multi Linear Regression, k-Nearest Neighbors, Support Vector Regression, Random Forest and Deep Neural Network). have been selected for regression. By using R-Square, RMSE and MAE as evaluation metrics, the best accurate model was estimated according to the variables for each machine learning model. In addition, to address the small amount of data acquired through lab experiments, bootstrapping method, a technique utilized in statistics, was used. As a result, the most accurate model selected was Random Forest, with parameters of n-estimator 200 by bootstrapping the original data nine times.
기업의 금융 부도를 예측하는 것은 전통적으로 비즈니스 분석에서 가장 중요한 예측문제 중 하나이다. 선행연구에서 예측모델은 통계 및 기계학습 기반의 기법을 적용하거나 결합하는 방식으로 제안되었다. 본 논문에서는 잘 알려진 최적화기법 중 하나인 시뮬레이티드 어니일링에 기반한 새로운 지능형 예측모델을 제안한다. 시뮬레이티드 어니일링은 유전자알고리즘과 유사한 최적화 성능을 가진 것으로 알려져 있다. 그럼에도 불구하고, 시뮬레이티드 어니일링을 사용한 비즈니스 의사결정 문제의 예측과 분류에 관한 연구가 거의 없었기 때문에, 비즈니스 분석에서의 유용성을 확인하는 것은 의미가 있다. 본 연구에서는 시뮬레이티드 어니일링과 기계학습의 결합 모델을 사용하여 부도예측모델의 입력 특징을 선정한다. 최적화 기법과 기계학습기법을 결합하는 대표적인 유형은 특징 선택, 특징 가중치 및 사례 선택이다. 이 연구에서는 선행연구에서 가장 많이 연구된 특징 선택을 위한 결합모델을 제안한다. 제안하는 모델의 우수성을 확인하기 위하여 본 연구에서는 한국 기업의 실제 재무데이터를 이용하여 그 결과를 분석한다. 분석결과는 제안된 모델의 예측 정확도가 단순한 모델의 예측 정확성보다 우수하다는 것을 보여준다. 특히 기존의 의사결정나무, 랜덤포레스트, 인공신경망, SVM 및 로지스틱 회귀분석에 비해 분류성능이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.