• Title/Summary/Keyword: a motion system

Search Result 6,850, Processing Time 0.035 seconds

A Study on Whirling, Tilting, Flying motion of 3.5 inch FDB spindle system (3.5인치 FDB 스핀들 시스템의 Whirling, Tilting, Flying motion에 관한 연구)

  • 오승혁;이상훈;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.579-585
    • /
    • 2003
  • This paper investigates the whirling, tilting and flying motion of a HDD spindle system supported by FDB experimentally. Experimental setup is built to measure the flying, whirling and tilting motion of the HDD spindle system, and three capacitance probes fixed on the xyz-micrometers measure the displacement of a HDD spindle system in the xyz-directions. This research shows that the tilting and whirling motion is mostly dependent on the centrifugal force and the gyroscopic moment due to the unbalanced mass of a HDD spindle. It also shows that the rotating HDD spindle starts to float to the equilibrium position in the z-direction until the weight of the rotating spindle is equal to the supporting pressure generated in the upper and lower thrust bearing.

  • PDF

Chaos Control of the Pitch Motion of the Gravity-gradient Satellites in an Elliptical Orbit (타원궤도상의 중력구배 인공위성의 Pitch운동의 혼돈계 제어)

  • Lee, Mok-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • The pitch motion of a gravity-gradient satellite can be chaotic, depending on the ratio of mass moments of inertia and the eccentricity of the satellite orbit. For a precise prediction of motion, chaotic pitch motion has to be changed to non-chaotic motion. Feedback control can be used to obtain nonchaotic pitch motion. For chaos control and stabilization of the pitch motion of a gravity-gradient satellite, a feedback control system is designed, based on the linear nonautonomous system obtained by linearizing the nonlinear pitch motion. The control law obtained has two parameters and is applied to chaotic nonlinear pitch motion. The nonlinear control system satisfies the proposed control objectives in the range of the nonchaotic parameter space.

A Data Driven Motion Generation for Driving Simulators Using Motion Texture (모션 텍스처를 이용한 차량 시뮬레이터의 통합)

  • Cha, Moo-Hyun;Han, Soon-Hung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.747-755
    • /
    • 2007
  • To improve the reality of motion simulator, the method of data-driven motion generation has been introduced to simply record and replay the motion of real vehicles. We can achieve high quality of reality from real samples, but it has no interactions between users and simulations. However, in character animation, user controllable motions are generated by the database made up of motion capture signals and appropriate control algorithms. In this study, as a tool for the interactive data-driven driving simulator, we proposed a new motion generation method. We sample the motion data from a real vehicle, transform the data into the appropriate data structure(motion block), and store a series of them into a database. While simulation, our system searches and synthesizes optimal motion blocks from database and generates motion stream reflecting current simulation conditions and parameterized user demands. We demonstrate the value of the proposed method through experiments with the integrated motion platform system.

Study on Hybrid Control for Motion Control of Mobile Robot Systems (이동로봇의 동작 제어를 위한 하이브리드 시스템 제어에 관한 연구)

  • Lim, Mee-Seub;Lim, Jin-Mo;Lim, Joon-Hong;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2348-2350
    • /
    • 1998
  • The hybrid control system for a wheeled mobile robot with nonholonomic constraints to perform a cluttered environment maneuver is proposed. The proposed hybrid control system consists of a continuous state system for the trajectory control, a discrete state system for the motion and orientation control, and an interface control system for the interaction process between the continuous dynamics and the discrete dynamics The continuous control systems are modeled by the switched systems with the control of driving wheels, and the digital automata for motion control are modeled and implemented by the abstracted motion of mobile robot. The motion control tasks such as path generation, motion planning, and trajectory control for a cluttered environment are investigated as the applications by simulation studies.

  • PDF

Design of a Motion Recognition System for the Realistic Biathlon Simulator System (실감형 바이애슬론 시뮬레이터를 위한 동작 인식 시스템 설계)

  • Kim, Cheol-min;Lee, Min-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.396-399
    • /
    • 2018
  • In this paper, we propose a motion recognition system for identification and interaction with simulator used in the realistic biathlon simulator. The proposed system tried to improve the motions data which is obstructed by the obstacles or overlapping joints and the motion due to the fast motion in the process of recognizing the various motion patterns in the biathlon. In this paper, we constructed a multi-camera motion recognition system based on IoT devices, and then we applied a skeletal area interpolation method for normal motion identification. We designed a system that can increase the recognition rate of motion from the biathlon. The proposed system can be applied to the analysis of snow sports motion and it will be used to develop realistic biathlon simulator system.

  • PDF

A study on improvement of robot motion control in teaching and operating expert system/world coordinate system (TOES/WCS) (기능좌표계를 이용한 교시 및 실행 전문가 시스템(TOES/WCS)에 있어서의 로보트의 동작제어 개선에 관한 연구)

  • 이순요;한장희
    • Journal of the Ergonomics Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.41-46
    • /
    • 1989
  • The purpose of this study is to improve robot motion control in teaching and operating the expert system/world coordinate system (TOES/WCS) constructed in the previous study. The major contribution of this study is reduction of the inaccuracy in coordinated reading and the movement time of robots in macro motion control. This study also reduces undesirable time of micro motion control by using an unit control (UC) and a micro unit control (MUC) in micro motion control.

  • PDF

Development of a motion system operating software for a driving simulator (차량 시뮬레이터의 운동시스템 구동소프트웨어 개발)

  • 박경균;박일경;조준희;이운성;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.496-499
    • /
    • 1997
  • This paper describes the operating software of a motion system developed for a driving simulator, consisting of a six degree of freedom Stewart platform driven hydraulically. The drive logic, consisting of an washout algorithm, inverse kinematic analysis, and a control algorithm, has been developed and applied for creating high fidelity motion cues. The basic environment of the operating software is based on LabVIEW 4.0 and DLL modules compiled by Fortran.

  • PDF

The Motion Transformation of Character Included Contrained Optimization Problem (구속조건을 고려한 캐릭터의 움직임 변경)

  • 이지홍;이원희;조인성
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.223-226
    • /
    • 2002
  • If one can easily modify the existing motion data to a new motion in making an animation movie, he can save a lot of time for graphic design. To implement this kind of system, we propose a PC-based system composed of low cost commercial animation tool (3D Studio Max) for visualization of the animation and motion editing module that handles optimization process during the motion transform. Researchers studying advanced motion transform techniques only have to focus on the mathematical manipulation of the motion data

  • PDF

An Observation System of Hemisphere Space with Fish eye Image and Head Motion Detector

  • Sudo, Yoshie;Hashimoto, Hiroshi;Ishii, Chiharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.663-668
    • /
    • 2003
  • This paper presents a new observation system which is useful to observe the scene of the remote controlled robot vision. This system is composed of a motionless camera and head motion detector with a motion sensor. The motionless camera has a fish eye lens and is for observing a hemisphere space. The head motion detector has a motion sensor is for defining an arbitrary subspace of the hemisphere space from fish eye lens. Thus processing the angular information from the motion sensor appropriately, the direction of face is estimated. However, since the fisheye image is distorted, it is unclear image. The partial domain of a fish eye image is selected by head motion, and this is converted to perspective image. However, since this conversion enlarges the original image spatially and is based on discrete data, crevice is generated in the converted image. To solve this problem, interpolation based on an intensity of the image is performed for the crevice in the converted image (space problem). This paper provides the experimental results of the proposed observation system with the head motion detector and perspective image conversion using the proposed conversion and interpolation methods, and the adequacy and improving point of the proposed techniques are discussed.

  • PDF

Experimental Study on the Whirling, Tilting and Flying Motion of the FDB Spindle System of a 3.5' HDD (3.5인치 HDD용 FDB스핀들 시스템의 훨링, 플라잉과 틸팅 거동에 관한 연구)

  • Oh, S.H.;Lee, S.H.;Jang, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.39-45
    • /
    • 2005
  • This research develops an experimental method to measure the motion of a FDB spindle system with a 3.5' disk by using three capacitance probes fixed on the xyz-micrometers, and it shows that a FDB spindle system has the whirling, flying and tilting motion. It also shows that the whirling, flying and tilting motion converge very quickly to the steady state at the same time when the rotor reaches the steady-state speed. However, they are quite large even at the steady state when they are compared with the 10nm flying height of a magnetic head. For the FDB spindle system used in this experiment, the whirl radius and the peak-to-peak variation of flying height and tilting angle at the steady-state speed of 7,200rpm are 0.675m, 30nm and $5.758\times10^{-3^{\circ}}$, respectively, so that the radial motion of the FDB spindle system exceeds a track pitch of a 3.5' HDD with 90,000 TPI.