• Title/Summary/Keyword: a modeling

Search Result 26,009, Processing Time 0.05 seconds

Modeling and Control of Fixed-time Traffic Control Problem with Real-time Temporal Logic Frameworks (실시간 시간논리구조를 이용한 고정시간 교통제어 문제의 모델링 및 제어)

  • Jeong, Yong-Man;Lee, Won-Hyok;Choi, Jeong-Nae;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.109-112
    • /
    • 1997
  • A Discrete Event Dynamic System is a system whose states change in response to the occurrence of events from a predefined event set. A major difficulty in developing analytical results for the systems is the lack of appropriate modeling techniques. This paper proposes the use of Real-time Temporal Logic as a modeling tool for the modeling and control of fixed-time traffic control problem which by way of a DEDS. The Real-time Temporal Logic Frameworks is extended with a suitable structure of modeling hard real-time constraints. Modeling rules are developed for several specific situations. It is shown how the graphical model can be translated to a system of linear equations and constraints.

  • PDF

A Study on Influential Factors in Mathematics Modeling Academic Achievement

  • Li, Mingzhen;Pang, Kun;Yu, Ping
    • Research in Mathematical Education
    • /
    • v.13 no.1
    • /
    • pp.31-48
    • /
    • 2009
  • Utilizing the path analysis method, the study explores the relationships among the influential factors in mathematics modeling academic achievement. The following conclusions are drawn: 1. Achievement motivation, creative inclination, cognitive style, the mathematical cognitive structure and mathematics modeling self-monitoring ability, those have significant correlation with mathematics modeling academic achievement; 2. Mathematical cognitive structure and mathematics modeling self-monitoring ability have significant and regressive effect on mathematics modeling academic achievement, and two factors can explain 55.8% variations of mathematics modeling academic achievement; 3. Achievement motivation, creative inclination, cognitive style, mathematical cognitive structure have significant and regressive effect on mathematics modeling self-monitoring ability, and four factors can explain 70.1% variations of mathematics modeling self-monitoring ability; 4. Achievement motivation, creative inclination, and cognitive style have significant and regressive effect on mathematical cognitive structure, and three factors can explain 40.9% variations of mathematical cognitive structure.

  • PDF

Effects of numerical modeling simplification on seismic design of buildings

  • Raheem, Shehata E Abdel;Omar, Mohamed;Zaher, Ahmed K Abdel;Taha, Ahmed M
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.731-753
    • /
    • 2018
  • The recent seismic events have led to concerns on safety and vulnerability of Reinforced Concrete Moment Resisting Frame "RC-MRF" buildings. The seismic design demands are greatly dependent on the computational tools, the inherent assumptions and approximations introduced in the modeling process. Thus, it is essential to assess the relative importance of implementing different modeling approaches and investigate the computed response sensitivity to the corresponding modeling assumptions. Many parameters and assumptions are to be justified for generation effective and accurate structural models of RC-MRF buildings to simulate the lateral response and evaluate seismic design demands. So, the present study aims to develop reliable finite element model through many refinements in modeling the various structural components. The effect of finite element modeling assumptions, analysis methods and code provisions on seismic response demands for the structural design of RC-MRF buildings are investigated. where, a series of three-dimensional finite element models were created to study various approaches to quantitatively improve the accuracy of FE models of symmetric buildings located in active seismic zones. It is shown from results of the comparative analyses that the use of a calibrated frame model which was made up of line elements featuring rigid offsets manages to provide estimates that match best with estimates obtained from a much more rigorous modeling approach involving the use of shell elements.

Exploring Opportunities for Mathematical Modeling in Korean High School Textbooks: An Analysis of Exponential and Logarithmic Function Tasks

  • Hyun Joo Song;Yeonseok Ka;Jihyun Hwang
    • Research in Mathematical Education
    • /
    • v.26 no.3
    • /
    • pp.253-270
    • /
    • 2023
  • This study aims to investigate the extent to which Korean high school textbooks incorporate opportunities for students to engage in the mathematical modeling process through tasks related to exponential and logarithmic functions. The tasks in three textbooks were analyzed based on the actions required for each stage in the mathematical modeling process, which includes identifying essential variables, formulating models, performing operations, interpreting results, and validating the outcomes. The study identified 324 units across the three textbooks, and the reliability coefficient was 0.869, indicating a high level of agreement in the coding process. The analysis revealed that the distribution of tasks requiring engagement in each of the five stages was similar in all three textbooks, reflecting the 2015 revised curriculum and national curriculum system. Among the 324 analyzed tasks, the highest proportion of the units required performing operations found in the mathematical modeling process. The findings suggest a need to include high-quality tasks that allow students to experience the entire process of mathematical modeling and to acknowledge the limitations of textbooks in providing appropriate opportunities for mathematical modeling with a heavy emphasis on performing operations. These results provide implications for the development of mathematical modeling activities and the reconstruction of textbook tasks in school mathematics, emphasizing the need to enhance opportunities for students to engage in mathematical modeling tasks and for teachers to provide support for students in the tasks.

A Fact-oriented Ontological Approach to Process Modeling for Knowledge-based Services (지식 기반 서비스를 위한 사실 지향 온톨로지 기반의 프로세스 모델링 접근법)

  • Lee, Jeong-Soo;Kim, Kwang-Soo;Kim, Cheol-Han
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.40-50
    • /
    • 2009
  • Knowledge-based services are largely dependent upon human-driven works. Therefore, considering human characteristics is required when modeling processes for knowledge-based services. As an emerging technology for Business Process Management, Human Interaction Management and its supportive process management can be an alternative to deal with human-driven processes. However, current HIM does not suggest concrete method for modeling conditions that are essential to realize supportive process management. And the condition modeling of HumanEdj, the only HIM software implemented, reveals the problem of complexity. As a solution, this paper suggests a fact-oriented ontological approach to process modeling. The approach uses human-friendly form of facts for condition modeling.

New Modeling Method for an Electrodeless Fluorescent Lamp Using the Relation of Lamp Output Power and the Modeling Coefficients of the Lamp (무전극램프의 출력전력 변화에 따른 새로운 모델링 기법)

  • Lim, Byoung-Noh;Jang, Mog-Soon;Sin, Dong-Seok;Park, Chong-Yeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1626-1631
    • /
    • 2007
  • This paper presents a new modeling method using lamp output power and the modeling coefficients of the lamp. The proposed method utilizes the lamp modeling coefficients such as equivalent impedance Z(p), coupling coefficient of the transformer k(p), turns ratio of the transformer n(p), and plasma resistance Rp(p) as a function of lamp output power. The equivalent impedance Z(p) was developed from the equivalent resistance Req(p) and equivalent inductance Leq(p) of the lamp. Simulation and experimental results of the proposed model are presented in order to validate the proposed method. The modeling method can use to design an impedance matching circuit for a Class-D inverter.

Performance Improvement of the Inverse Modeling using Adaptive Line Enhancer (적응 선형 증진기를 이용한 인버스 모델링의 성능향상)

  • Kim, Heung-Sub;Hong, Jin-Seok;Son, Dong-Gu;Shin, Jun;Oh, Jae-Eung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.267-271
    • /
    • 1996
  • In this study, performance improvement of the inverse modeling as the on-line control method for the estimation, control experiment is performed. As the modeling errors is occurred in duct system arbitrarily, a case using the filtered-x LMS algorithm only as the control method, a case using tile inverse modeling method only and a case using the inverse modeling with the adaptive line enhancer are compared. The estimation errors between real secondary path transfer functions and the estimated and the control performances of primary noises with these estimated transfer functions are compared.

  • PDF

Two-Phase Neuro-System Identification Based on Artificial System (모조 시스템 형성에 기반한 2단계 뉴로 시스템 인식)

  • 배재호;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.107-118
    • /
    • 1998
  • Two-phase neuro-system identification method is presented. The 1$^{st}$-phase identification uses conventional neural network mapping for modeling an input-output system. The 2$^{nd}$ -phase modeling is also performed sequentially using the 1$^{st}$-phase modeling errors. In the 2$^{nd}$ a phase modeling, newly generated input signals, which are obtained by summing the 1st-phase modeling error and artificially generated uniform series, are utilized as system's I-O mapping elements. The 1$^{st}$-phase identification is interpreted as a “Real Model” system identification because it uses system's real data(i.e., observations and control inputs) while the 2$^{nd}$ -phase identification as a “Artificial Model” identification because of using artificial data. Experimental results are given to verify that the two-phase neuro-system identification could reduce the overall modeling errors.rrors.

  • PDF

An Expert System of Moulding Working for Air Intake Hose Products using 3-Dimensional Parametric Modeling Technique

  • Sang Bong Park
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.168-176
    • /
    • 1998
  • This paper deals with an application on the mould machining of air intake hose product by using 3-dimensional parametric modeling techniques. The detailed domain is the 3-dimensional product with similar shapes and different sizes which needs too much working time for preparation of modeling or machining due to making a trial and errors repeatedly. Decision making rules for selection of modeling order and technique, and for calculation of cutting conditions, and for determination of sequence and method concerning machining operations are required by interview of expert engineers in the field. The developed expert system of modeling and machining is programmed by using a user programming language under the CAD/CAM software of the Personal Designer. The developed system that aids a mould engineer who is working in the modeling and machining section which deal with air intake hose product provides strong and useful capabilities.

  • PDF

Finite Element Analysis for Performance Evaluation of Type III Hydrogen Pressure Vessel for the Clean Tech Fuel Cell Vehicles (친환경 연료전지 자동차용 Type III 수소 압력용기의 구조성능 평가를 위한 유한 요소 해석)

  • Son, Dae-Sung;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.938-945
    • /
    • 2012
  • To design and estimate material failures of Type III pressure vessels, which have excellent stability and performance, various modeling techniques have been introduced. This paper provided a hybrid modeling technique composed of ply-based modeling for a cylinder part and laminate-base modeling technique for a dome part for enhancing modeling efficiency. The ply-based modeling technique provided accurate ply stresses directly for predicting material failure, on the other hand, additional manipulations in stress calculations, which may cause some errors, were needed for the case of the laminate-based modeling technique. The ply stresses in fiber, transverse and in-plane shear directions were compared with the corresponding material strengths to predict material failure.