• Title/Summary/Keyword: a modeling

Search Result 26,009, Processing Time 0.052 seconds

A design and implementation of group decision support system using object-oriented modeling technique

  • Kim, Soung-Hie;Cho, Sung-Sik;Kim, Sun-Uk;Park, Hung-Kook
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.200-203
    • /
    • 1996
  • Object-Oriented Modeling Technique (OMT) [1] promotes better understanding of requirements, cleaner designs, and more maintainable systems. A development of Group Decision Support System (GDSS) needs this advantage of OMT. GDSS designed through OMT proposes 3 modelings, object modeling, dynamic modeling, and functional modeling. This paper illustrates a design of GDSS using these 3 modelings. By exploiting the object-oriented paradigm, this design results in a highly system-independent design. And this paper shows some implementation issues including a tip of C++ code.

  • PDF

Modeling of Gate/Body-Tied PMOSFET Photodetector with Built-in Transfer Gate (내장된 전송게이트를 가지는 Gate/Body-Tied PMOSFET 광 검출기의 모델링)

  • Lee, Minho;Jo, Sung-Hyun;Bae, Myunghan;Choi, Byoung-Soo;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.284-289
    • /
    • 2014
  • In this paper, modeling of a gate/body-tied (GBT) PMOSFET photodetector with built-in transfer gate is performed. It can control the photocurrent with a high-sensitivity. The GBT photodetector is a hybrid device consisted of a MOSFET, a lateral BJT, and a vertical BJT. This device allows for amplifying the photocurrent gain by $10^3$ due to the GBT structure. However, the operating parameters of this photodetector, including its photocurrent and transfer characteristics, were not known because modeling has not yet been performed. The sophisticated model of GBT photodetector using a process simulator is not compatible with circuit simulator. For this reason, we have performed SPICE modeling of the photodetector with reduced complexity using Cadence's Spectre program. The proposed modeling has been demonstrated by measuring fabricated chip by using 0.35 im 2-poly 4-metal standard CMOS technology.

Modeling of Engine Coolant Temperature in Diesel Engines for the Series Hybrid Powertrain System (직렬형 하이브리드 추진시스템의 디젤 엔진 냉각수온 모델링)

  • Kim, Yongrae;Lee, Yonggyu;Jeong, Soonkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • Modeling of engine coolant temperature was conducted for a series hybrid powertrain system. The purpose of this modeling was a simplification of complex heat transfer process inside a engine cooling system in order to apply it to the vehicle powertrain simulation software. A basic modeling concept is based on the energy conservation equation within engine coolant circuit and are composed of heat rejection from engine to coolant, convection heat transfer from an engine surface and a radiator to ambient air. At the final stage, the coolant temperature was summarized as a simple differential equation. Unknown heat transfer coefficients and heat rejection term were defined by theoretical and experimental methods. The calculation result from this modeling showed a reasonable prediction by comparison with the experimental data.

Digital Manufacturing based Modeling and Simulation of Production Process in Subassembly Lines at a Shipyard (디지털 생산을 기반으로 한 조선 소조립 공정 모델링 및 시뮬레이션)

  • 이광국;신종계;우종훈;최양렬;이장현;김세환
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.185-192
    • /
    • 2003
  • Digital Manufacturing-based production could be very effective in shipbuilding in order to save costs and time, to increase safety for workers, and to prevent bottleneck processes in advance. Digital shipbuilding system, a simulation-based production tool, is being developed to achieve such aspects in Korea. To simulate material flow in a subassembly line at a shipyard, the product, process and resources was modeled for the subassembly process which consisted of several sub-processes such as tack welding, piece alignment, tack welding, and robot welding processes. The analysis and modeling were carried out by using the UML(Unified Modeling Language), an object-oriented modeling method as well as IDEF(Integration DEFinition), a functional modeling tool. Initially, the characteristics of the shop resources were analyzed using the shipyard data, and the layout of the subassembly line was designed with the resources. The production process modeling of the subassembly lines was performed using the discrete event simulation method. Using the constructed resource and process model, the productivity and efficiency of the line were investigated. The number of workers and the variations In the resource performance such as that of a new welding robot were examined to simulate the changes in productivity. The bottleneck process floated according to the performance of the new resources. The proposed model was viewed three-dimensionally in a digital environment so that interferences among objects and space allocations for the resources could be easily investigated

  • PDF

Numerical Study on Variation of Penetration Performance into Concrete with Reinforcement Modeling Methods (철근 모사 방법에 따른 콘크리트 관통성능 변화에 관한 수치적 연구)

  • Baek, Seung-Ju
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.97-105
    • /
    • 2016
  • This paper discusses the effect of numerical reinforcement modeling methods on the penetration performance of a penetrator into a concrete target. AUTODYN-3D has been used to conduct the numerical penetration analyses. In order to validate the computational approach, experimental data of Hanchak have been compared to a computation result and a reasonably good agreement could be obtained. The strength and the diameter of a reinforcement have been changed to find out the effect of reinforcement modeling methods on the penetration performance. The impact locations and velocities of a penetrator are also changed to investigate the effect of reinforcement modeling methods. Residual velocities of a penetrator are quantitatively compared in detail for the evaluation of reinforcement modeling effects on the penetration performance.

Enhancement of BIM Modeling Automation Algorithm for Linear-Based Tunnel Infrastructure and Development of BIM Modeling Automation System (선형기반 터널 인프라 구조물의 BIM 모델링 자동화 알고리즘 개선 및 BIM 모델링 자동화 시스템 개발)

  • Kim, Yun-Ok;Kim, Ji-Young; Kim, Tae-Min;Moon, So-Yeong
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.1-11
    • /
    • 2023
  • In order to use BIM as a tool for improving the productivity and quality of products in the construction industry, a BIM model must be created from the design stage first. Infrastructure structures such as bridges and tunnels are mainly created based on three-dimensional alignment in the generation of BIM models. Especially, generation of BIM models based on three-dimensional linearity has high task difficulty and algorithms for automating BIM modeling for railway infra structures have been suggested in previous studies. This study improved the BIM modeling automation algorithm of railway infrastructures and developed a system based on the algorithm so that it can be easily used by ordinary users. The system was built as an add-in system of Autodesk's Revit. As an improvement first, it is possible to arrange different libraries for each pattern, enabling various uses. In addition, it can be created models of several members with a single process and the system can automatically places structures that are added periodically, such as Rock Bolt and Fore Polling. Finally, 3D length information and volume for each pattern are automatically calculated for more accurate 3D-based volume calculation. This study contributes to increasing user accessibility by building a BIM modeling automation algorithm into a system. The system is expected to improve the efficiency of BIM modeling creation of linear-based infra structures, including railway infrastructure.

Catchment Responses in Time and Space to Parameter Uncertainty in Distributed Rainfall-Runoff Modeling (분포형 강우-유출 모형의 매개변수 불확실성에 대한 시.공간적 유역 응답)

  • Lee, Gi-Ha;Takara, Kaoru;Tachikawa, Yasuto;Sayama, Takahiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2215-2219
    • /
    • 2009
  • For model calibration in rainfall-runoff modeling, streamflow data at a specific outlet is obviously required but is not sufficient to identify parameters of a model since numerous parameter combinations can result in very similar model performance measures (i.e. objective functions) and indistinguishable simulated hydrographs. This phenomenon has been called 'equifinality' due to inherent parameter uncertainty involved in rainfall-runoff modeling. This study aims to investigate catchment responses in time and space to various uncertain parameter sets in distributed rainfall-runoff modeling. Seven plausible (or behavioral) parameter sets, which guarantee identically-good model performances, were sampled using deterministic and stochastic optimization methods entitled SCE and SCEM, respectively. Then, we applied them to a computational tracer method linked with a distributed rainfall-runoff model in order to trace and visualize potential origins of streamflow at a catchment outlet. The results showed that all hydrograph simulations based on the plausible parameter sets were performed equally well while internal catchment responses to them showed totally different aspects; different parameter values led to different distributions with respect to the streamflow origins in space and time despite identical simulated hydrographs. Additional information provided by the computational tracer method may be utilized as a complementary constraint for filtering out non-physical parameter set(s) (or reducing parameter uncertainty) in distributed rainfall-runoff modeling.

  • PDF

DEVSim++ - NS2 Interoperating Environment for Protocol Evaluation (프로토콜 평가를 위한 DEVSim++ 와 NS2 의 연동 환경)

  • 김회준;김탁곤
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.253-258
    • /
    • 2002
  • This paper proposes a methodology for development of protocol models. The methodology attempts to employ two modeling environments in models development, NS2 and DEVSim++, which will interoperate during simulation. NS2 is a widely used network simulator in protocol research, which employs an informal modeling approach. Within the approach time and state information of protocol models are not explicitly described, thus being hard to validate model. On the other hand the DEVS formalism is a mathematical framework for modeling a discrete event system in a hierarchical, modular manner. In DEVS, model's time and state information is described explicitly, By using DEVS formalism, models can easily be validated and errors in the modeling stage can be reduced. However, the DEVS simulator, DEVSim++, supports a small amount of models library which are required to build simulation models of general communication network. Although NS2 employs an informal modeling approach and models validation is difficult, it supports abundant models library validated by experimental users. Thus, combination of DEVS models and NS2 models may be an effective solution for network modeling. Such combination requires interoperation between DEVSim++ simulator and NS2 simulator. This paper develops an environment for such interoperation. Correctness and effectiveness of the implemented interoperation environment have been validated by simulation of UDP and TCP models.

  • PDF

3DARModeler: a 3D Modeling System in Augmented Reality Environment (3DARModeler : 증강현실 환경 3D 모델링 시스템)

  • Do, Trien Van;Lee, Jeong-Gyu;Lee, Jong-Weon
    • Journal of Korea Game Society
    • /
    • v.9 no.5
    • /
    • pp.127-136
    • /
    • 2009
  • This paper describes a 3D modeling system in Augmented Reality environment, named 3DARModeler. It can be considered a simple version of 3D Studio Max with necessary functions for a modeling system such as creating objects, applying texture, adding animation, estimating real light sources and casting shadows. The 3DARModeler introduces convenient, and effective human-computer interaction to build 3D models. The 3DARModeler targets nontechnical users. As such, they do not need much knowledge of computer graphics and modeling techniques. All they have to do is select basic objects, customize their attributes, and put them together to build a 3D model in a simple and intuitive way as if they were doing in the real world.

  • PDF