• 제목/요약/키워드: a lower temperature

검색결과 7,537건 처리시간 0.035초

Performance and Heat Tolerance of Broilers as Affected by Genotype and High Ambient Temperature

  • Al-Batshan, H.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권10호
    • /
    • pp.1502-1506
    • /
    • 2002
  • This experiment was conducted to evaluate the effects of the broiler's genotype ($G_t$) and ambient temperature ($T_a$) on performance and core body temperature ($T_core$) of broiler chicks. A factorial arrangement of two $G_t$ (Hubbard and ISA J57 chicks) and two $T_a$ (moderate, $23{\pm}0.5^{\circ}C$ and hot, $33{\pm}0.5^{\circ}C$) were used in this study. Performance data (body weight gain, feed intake and feed:gain ratio) were determined weekly for six weeks. Chicks' $T_core$ was measured using a biotelemetric system between Weeks five and six. Results showed that body weight gain and feed intake were significantly high, and feed:gain ratio was significantly low for Hubbard chicks compared to those of ISA J57 chicks. High $T_a$ significantly reduced weight gain and feed intake. Furthermore, the reduction in body weight gain and feed intake under the hot $T_a$ was more pronounced for Hubbard chicks than those of the ISA J57 chicks resulting in significant $G_t$ by $T_a$ interaction. Chicks grown under moderate $T_a$ had significantly lower $T_core$ than those grown under hot $T_a$. The $T_core$ of the Hubbard chicks was significantly lower than that of the ISA J57 at the moderate $T_a$ while under the hot $T_a$, the magnitude of the change in $T_core$ was more pronounced in Hubbard chicks than that of ISA J57; this resulted in a significant $G_t$ by $T_a$ interaction. The results of this study indicate that chicks with higher potential for growth under thermo-neutral temperature are more susceptible to heat stress than chicks with lower potential for growth. This maybe due, at least in part, to their lower body $T_core$ under moderate temperature and to the lesser ability of these fast growing chicks to regulate their $T_core$ when exposed to heat stress, as was clearly shown on these birds' performance.

Mock-up실험에 의한 바닥복사 냉방시스템의 온도특성에 관한 연구 (A Study on the Temperature Characteristics of the Floor Cooling System of Mock-up Experimentent)

  • 유호천;이영아
    • 한국태양에너지학회 논문집
    • /
    • 제28권6호
    • /
    • pp.48-57
    • /
    • 2008
  • The research analyzed the distribution of the indoor temperatures of a radiant floor cooling system through mock-up experiments. It investigated the temperature difference of feed water, the vertical temperature difference of indoor air, the temperature difference of floor surface, and so on. The following is the results of the research. First, the research shows that the difference between indoor temperature and outside temperature was the smallest when the temperature of feed water was set at 16$^{\circ}C$. In addition, the temperature changes according to indoor positions (wall, room, floor, and ceiling) were the most uniform. Thus, the research found that the cold water temperature of 16$^{\circ}C$ is the most proper. In addition, it confirmed that the feed water temperature of 18$^{\circ}C$ is effective because the temperature can lower the temperature of a room to 13.55$^{\circ}C$, which is lower than the temperature of a non-cooling mode. Second, an investigation on the temperature distribution of vertical air in indoor space shows that the temperature distribution had a difference of 0.2 to 1.9$^{\circ}C$ on the average, which satisfies the range of 3.0$^{\circ}C$ in the standard of ISO.

추운 환경에서 노출된 부위에 따른 체온조절 반응에 대한 연구 (Effects of Exposed Parts of Body with Garments on Human Thermoregulatory Responses to Cold Environments)

  • 성유진;이순원
    • 한국의류학회지
    • /
    • 제21권6호
    • /
    • pp.977-987
    • /
    • 1997
  • The present study was designed to see what the local cooling of different body regions especially head and neck, hands and feet effect physiological responses in cold environment. Four male subjects wore garments covering whole body except face and rested for 20 min and then they rested for 40 min with uncovered head, neck, hands and feet, respectively in a cold environment(10$\pm$1$^{\circ}C$, 50$\pm$5%R.H.) 1. Rectal temperature increased when hands and feet were exposed to cold environment respectively, and when head and neck, hands and feet were exposed to cold environment together. 2. Exposed skin temperatures fell in cold environment. And hands temperature was lower than any other exposed skin temperatures. The hands temperature was significantly lower when head was exposed than when head was covered. And the feet temperature were significantly lower when hands were exposed than when hands were covered. 3. Mean skin temperature was the lowest when head and neck, hands and feet were exposed simultaneously, In conclusion, skin temperatures of extremities were decreased due to exposure to the cold environment. Especially upper extremities were lower than lower extremities by exposed parts of the body. It seemed that the extremities played the role of cold receptors but head and neck didn't. And there were large heat losses from the unprotected head and neck. In cold environment of 1$0^{\circ}C$ , thus, it is suggested for the purpose of thermoregulatory responses that head and neck would be covered and extremities would be exposed, especially upper extremities.

  • PDF

pH/온도-동시 민감성 Hydrogel의 합성조건에 따른 특성 연구 (Characterization of a pH/Temperature-Sensitive Hydrogel Synthesized at Different pH and Temperature Conditions)

  • 유형덕;정인식;박창호
    • KSBB Journal
    • /
    • 제15권6호
    • /
    • pp.548-555
    • /
    • 2000
  • 온도 및 pH에 동시에 민감한 하이드로젤 poly(N-isopropy­l lacrylamide-co-N,N-dimethylaminopropy Imethacrylamide)을 온도 (13, 15.5, 18, 20.5 및 $23^{\circ}C$)와 pH (10.3, 11.3 및 12.3)를 달리 하여 합성하고 이 젤들의 외형, 기계적 강도, 젤 표면모양, LCST, 수축 pH 및 젤의 팽윤 특성을 연구하였다. 합성온도 및 합성 pH가 낮을수록 젤의 외형은 투명하였 고 기계적 강도는 높았다. SEM 관찰 결과 단백질 보다 더 큰 pore들 때문에 분리효율이 감소되는 것으로 사료된다. 합 성온도나 합성 pH의 증가는 LCST를 낮추었다. 외부온도가 LCST보다 낮은 $25^{\circ}C$ 에 서는 모든 합성온도와 합성 pH에 대 하여 젤은 전 pH에 걸쳐 팽윤된 상태에 있었다. $40^{\circ}C$에서는 LCST보다 높은 온도임에도 불구하고 poly (NIPAAm-co­D DMAPMAAm) 하이드로젤은 pH가 중성 및 산성 영역에서 팽윤되었다. 합성온도가 증가함에 따라 젤 부피가 가장 큰 폭으로 변하는 수축 pH가 더 높아졌다.

  • PDF

Effects of driving style and bedding in pigs transported to slaughterhouse in different temperatures

  • Dongcheol Song;Jihwan Lee;Kangheung Kim;Minho Song;Hanjin Oh;Seyeon Chang;Jaewoo An;Sehyun Park;Kyeongho Jeon;Hyeunbum Kim;Jinho Cho
    • Journal of Animal Science and Technology
    • /
    • 제65권4호
    • /
    • pp.878-889
    • /
    • 2023
  • Animal welfare during transport became an largely issue because of increasing demand for improved animal welfare standards. Most studies on the animal welfare during transportation have concentrated on the atmosphere and the temperature of the truck compartments. Thus, the objective of study was to collect and quantify three axis acceleration and determine the effect of bedding for transporting pigs from farm to slaughterhouse. A total of 2,840 crossbred fattening pigs with a live weight of approximately 115 kg were used. They were raised in the same commercial farms and transported to the same commercial slaughterhouse. A 3×2×2 completely randomized factorial design was used to investigate effects of rubber type bedding (bedding or non-bedding) and two levels of driving style (aggressive or normal) in three different time periods with different outside temperatures. Air temperature treatments were as follow: high temperature ([HT] higher than 24℃); low temperature ([LT] lower than 10℃); normal temperature ([NT] 10℃ to 24℃). In our experiment, pigs transported under aggressive driving style showed lower (p < 0.05) pH and water holding capacity (WHC) than those transported under normal driving style. Pigs transported under normal driving style showed a lower percentage of drip loss (DL) (p < 0.05) than those transported with an aggressive driving style. Also, transported with bedding showed higher (p < 0.05) lying behavior but lower (p < 0.05) sitting behavior than those transported without bedding. Pigs transported under normal driving style showed lower (p < 0.05) cortisol level than those transported under aggressive driving style. In conclusion, aggressive driving style cause acute stress in pigs, while bedding helps alleviate acute stress in pigs during transportation in LT.

Thermoregulatory Responses of Swamp Buffaloes and Friesian Cows to Diurnal Changes in Temperature

  • Koga, A.;Kurata, K.;Furukawa, R.;Nakajima, M.;Kanai, Y.;Chikamune, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권8호
    • /
    • pp.1273-1276
    • /
    • 1999
  • Several reports have indicated that a rectal temperature of buffaloes is easily influenced by their surroundings. To clarify an effect of changing environmental temperature on thermoregulatory responses of buffaloes, an environment with diurnal temperature changes of $25^{\circ}C$ to $35^{\circ}C$ was created using an artificial climate laboratory. Three swamp buffaloes and three Friesian cows were exposed to three different experimental periods as follows: Period 1 (constant temperature of $30^{\circ}C$, Period 2 (diurnally changing temperature) and Period 3 (diurnally changing temperature and fasting). Heat production, rectal temperature, respiration rate, heart rate and respiration volume were measured during each period. Rectal temperature of the buffaloes fluctuated diurnally with the changing temperature (Periods 2 and 3), but remained constant in cows. Mean heat production was significantly lower in buffaloes than in cows in Period 2 and 3. However, the maximum rectal temperature and the increment of heat production were not always lower in buffaloes than in cows during Period 2. These results show that a rectal temperature and heat production in buffaloes are markedly influenced by the diurnal changes in temperature. Compared with Bos Taurus cows, the differences may be attributed to the physiological features of buffaloes including a high heat conductivity of their bodies and an lower heat production.

냉부하검사(CST)로 살펴 본 원적외선 기능성 제품이 족부냉증에 미치는 영향 : A pilot study (Effect of far-infrared radiating products on cold hypersensitivity of lower limbs using Cold Stress Test (CST) : A pilot study)

  • 이윤재;이경섭
    • 대한한방체열의학회지
    • /
    • 제6권1호
    • /
    • pp.69-75
    • /
    • 2008
  • Purpose: We investigated the effect of far-infrared radiating products on cold hypersensitivity of lower limbs using CST. Methods: 7 patients with cold hypersensitivity of lower limbs were investigated in this study. Exclusive criteria was skin diseases, spinal nervous disease and external wounds. They were asked to answer the VAS of cold hypersensitivity at baseline and after 3 weeks. We measured temperature of lower limbs with Spectrum 9000 MB (Dorex Inc, USA). We performed cold stress test (CST) by 3 thermographic observation using DITI : 1st was taken after 15 minutes resting at $25^{\circ}C$, the 2nd was immediately taken after 1 minute soak in $20^{\circ}C$ water, the 3rd was taken at 15 minutes after soak. We performed 3 times of CST : 1st CST was perfomed at baseline, 2nd CST was perfomred after 1 week and just observation, 3rd CST was performed after 1 week using far-infrared radiating products (lasner, UMT, Korea). Results: After using products, temperature of foot incresed more than thigh area, but there was no significance. There was no statistical difference of VAS, change of temperature and CST between before and after using far-infrared radiating products. Conclusion: There was no statistical effect of far-infrared radiating products on change of temperature of lower limbs.

  • PDF

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.

리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구 (Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation)

  • 윤현기;하상현;이재인
    • 전력전자학회논문지
    • /
    • 제26권6호
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

축구복 소재와 디자인이 인체생리반응과 주관적 감각에 미치는 영향 (Physiological Responses and Subjective Sensations of Human Wearing Soccer Wear of Different Materials and Designs)

  • 최정화;김소영;전태원
    • 한국의류학회지
    • /
    • 제29권1호
    • /
    • pp.35-45
    • /
    • 2005
  • The purpose of this study was to evaluate thermal properties of soccer wear with different materials and designs. As a beginning step, the questionnaire survey about the actual condition of soccer wears was conducted. with the results of the questinnaire, two soccer wears with new material and design that were improved in tactile sensations, absorption and ventilation were developed. We evaluated thermal and subjective responses of subjects wearing Korea national soccer team uniform in 1998 World Cup (Uniform 98), soccer wear with new material and same design(New II) and with new material and new design(New I). New I was made with mesh in armhole for improving ventilation. Rectal temperature, skin temperature, clothing microclimate, and heart rate were measured in climatic chamber test(twelve times) and field test(eighteen times). The results were as follows. 1. As the results of the climatic chamber test, rectal temperature was lower in New I and New II than Uniform98, and mean skin temperature was lower in New I than Uniform 98 and New II. Heart rate was lower in New I than New II, and total body weight loss and local sweating were not significantly different by soccer wears. 2. As the results of the field test, rectal temperature was lower in New I than Uniform98 and New II. Mean skin temperature was lower in New II than Uniform98 and New I. Clothing microclimate temperature was lower in New II than Uniform98 and New 1, and clothing microclimate humidity was lower in New I, New II than Uniform 98. Heart rate was lower in New I than Uniform 98, New II and total body weight loss and local sweating were lower in New I, New II than Uniform 98. In conclusion, New I using new design using mesh in armhole and new material using sweat absorbent finishing was excellent from the point of view of physical responses, ventilation and sweat absorption.