• Title/Summary/Keyword: a layered structure

Search Result 991, Processing Time 0.03 seconds

Performance Analysis of Layered and Blended Organic Light-Emitting Diodes

  • Park, Jong-Woon;Yim, Yeon-Chan;Heo, Gi-Seok;Kim, Tae-Won;Lee, Jong-Ho;Park, Seung-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.424-427
    • /
    • 2008
  • We make performance simulations of three different organic light-emitting diodes (OLEDs), one of which is based on a conventional layered structure and the others on a blended structure where an emitting layer (EML) is either uniformly or stepwise mixed with an electron transport layer (ETL), Tris-(8-hydroxyquinoline) aluminum ($Alq_3$).

  • PDF

Fabrication and characterization of SILO isolation structure (SILO 구조의 제작 방법과 소자 분리 특성)

  • Choi, Soo-Han;Jang, Tae-Kyong;Kim, Byeong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.328-331
    • /
    • 1988
  • Sealed Interface Local Oxidation (SILO) technology has been investigated using a nitride/oxide/nitride three-layered sandwich structure. P-type silicon substrate was either nitrided by rapid thermal processing, or silicon nitride was deposited by LPCVD method. A three-layered sandwich structure was patterned either by reactive ion etch (RIE) mode or by plasma mode. Sacrificial oxidation conditions were also varied. Physical characterization such as cross-section analysis of field oxide, and electrical characterization such as gate oxide integrity, junction leakage and transistor behavior were carried out. It was found that bird's beak was nearly zero or below 0.1um, and the junction leakages in plasma mode were low compared to devices of the same geometry patterned in RIE mode, and gate oxide integrity and transistor behavior were comparable. Conclusively, SILO process is compatible with conventional local oxidation process.

  • PDF

Prediction and Measurement of Sound Transmission Loss for Multi-layered Acoustical Materials (다중층 음향 재료의 투과손실 예측과 측정)

  • Park, So-Hee;Park, Chul-Min;Chae, Ki-Sang;Kang, Yeon-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1013-1020
    • /
    • 2007
  • In this paper, the predictions and measurements of sound transmission loss(STL) are discussed for various types of acoustical materials and carpets. Random incidence sound transmission losses are measured by the sound intensity method. The in-house software HONUS2005 is used to predict TL and estimate the various physical properties such as the flow resistivity, the structure factor, the porosity, the Possion's ratio, and etc. After this estimation, various multi-layered materials with a steel plate are measured and predicted. In particular, Carpets are assumed to be membranes to predict acoustical performance. To confirm this assumption, double and triple-layered cases are also observed including two different kinds of carpets.

H.264 Encoding Technique of Multi-view Video expressed by Layered Depth Image (계층적 깊이 영상으로 표현된 다시점 비디오에 대한 H.264 부호화 기술)

  • Shin, Jong-Hong;Jee, Inn-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.43-51
    • /
    • 2014
  • Multi-view video including depth image is necessary to develop a new compression encoding technique for storage and transmission, because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This efficient method to compress new contents is suggested to use layered depth image representation and to apply for video compression encoding by using 3D warping. This paper proposed enhanced compression method using layered depth image representation and H.264/AVC video coding technology. In experimental results, we confirmed high compression performance and good quality of reconstructed image.

Design of Modal Transducer in 2D Structure Using Multi-Layered PVDF Films Based on Electrode Pattern Optimization (다층 압전 필름의 전극 패턴 최적화를 통한 2차원 구조물에서의 모달 변환기 구현)

  • 유정규;김지철;김승조
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.632-642
    • /
    • 1998
  • A method based on finite element discretization is developed for optimizing the polarization profile of PVDF film to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this polarization profile without repoling the PVDF film the polarization profile is approximated by optimizing electrode patterns, lamination angles, and poling directions of the multi-layered PVDF transducer. This corresponds to the approximation of a continuous function using discrete values. The electrode pattern of each PVDF layer is optimized by deciding the electrode of each finite element to be used or not. Genetic algorithm, suitable for discrete problems, is used as an optimization scheme. For the optimization of each layers lamination angle, the continuous lamination angle is encoded into discrete value using binary 5 bit string. For the experimental demonstration, a modal sensor for first and second modes of cantilevered composite plate is designed using two layers of PVDF films. The actuator is designed based on the criterion of minimizing the system energy in the control modes under a given initial condition. Experimental results show that the signals from residual modes are successfully reduced using the optimized multi-layered PVDF sensor. Using discrete LQG control law, the modal peaks of first and second modes are reduced in the amount of 12 dB and 4 dB, resepctively.

  • PDF

In-vitro elution of cisplatin and fluorouracil from bi-layered biodegradable beads

  • Liu, Kuo-Sheng;Pan, Ko-Ang;Liu, Shih-Jung
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.85-96
    • /
    • 2015
  • This study developed biodegradable bi-layered drug-eluting beads and investigated the in-vitro release of fluorouracil and cisplatin from the beads. To manufacture the drug-eluting beads, poly[(d,l)-lactide-co-glycolide] (PLGA) with lactide:glycolide ratios of 50:50 and 75:25 were mixed with fluorouracil or cisplatin. The mixture was compressed and sintered at $55^{\circ}C$ to form bi-layered beads. An elution method was employed to characterize the release characteristic of the pharmaceuticals over a 30-day period at $37^{\circ}C$. The influence of polymer type (i.e., 50:50 or 75:25 PLGA) and layer layout on the release characteristics was investigated. The experiment suggested that biodegradable beads released high concentrations of fluorouracil and cisplatin for more than 30 days. The 75:25 PLGA released the pharmaceuticals at a slower rate than the 50:50 PLGA. In addition, the bi-layered structure reduced the release rate of drugs from the core layer of the beads. By adopting the compression sintering technique, we will be able to manufacture biodegradable beads for long-term drug delivery of various anti-cancer pharmaceuticals.

Fabrication of Multi-layered Macroscopic Hydrogel Scaffold Composed of Multiple Components by Precise Control of UV Energy

  • Roh, Donghyeon;Choi, Woongsun;Kim, Junbeom;Yu, Hyun-Yong;Choi, Nakwon;Cho, Il-Joo
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • Hydrogel scaffolds composed of multiple components are promising platform in tissue engineering as a transplantation materials or artificial organs. Here, we present a new fabrication method for implementing multi-layered macroscopic hydrogel scaffold composed of multiple components by controlling height of hydrogel layer through precise control of ultraviolet (UV) energy density. Through the repetition of the photolithography process with energy control, we can form several layers of hydrogel with different height. We characterized UV energy-dependent profiles with single-layered PEGDA posts photocrosslinked by the modular methodology and examined the optical effect on the fabrication of multi-layered, macroscopic hydrogel structure. Finally, we successfully demonstrated the potential applicability of our approach by fabricating various macroscopic hydrogel constructs composed of multiple hydrogel layers.

Damped dynamic responses of a layered functionally graded thick beam under a pulse load

  • Asiri, Saeed A.;Akbas, Seref D.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.713-722
    • /
    • 2020
  • This article aims to illustrate the damped dynamic responses of layered functionally graded (FG) thick 2D beam under dynamic pulse sinusoidal load by using finite element method, for the first time. To investigate the response of thick beam accurately, two-dimensional plane stress problem is assumed to describe the constitutive behavior of thick beam structure. The material is distributed gradually through the thickness of each layer by generalized power law function. The Kelvin-Voigt viscoelastic constitutive model is exploited to include the material internal damping effect. The governing equations are obtained by using Lagrange's equations and solved by using finite element method with twelve -node 2D plane element. The dynamic equation of motion is solved numerically by Newmark implicit time integration procedure. Numerical studies are presented to illustrate stacking sequence and material gradation index on the displacement-time response of cantilever beam structure. It is found that, the number of waves increases by increasing the graduation distribution parameter. The presented mathematical model is useful in analysis and design of nuclear, marine, vehicle and aerospace structures those manufactured from functionally graded materials (FGM).

CORNER SINGULARITY AT THE MULTIPLE JUNCTION OF THE ELECTRIC TRANSMISSION

  • Choe, Hi-Jun;Park, Kyong-Yop;Sohn, Ayoung
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1311-1322
    • /
    • 2005
  • We consider the several plane sector domains which are bonded together along common edges with vertex at the origin. Such domains appear in electric conducting problem with multi-layered heterogeneous media. Our aim is to give a structure theorem of the singularities of the electric field at the corner. Also, we provide a regularity theorem for the electric field.

Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach

  • Anil, K. Lalepalli;Panda, Subrata K.;Sharma, Nitin;Hirwani, Chetan K.;Topal, Umut
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • In this research, a hybrid mathematical model is derived using the higher-order polynomial kinematic model in association with soft computing technique for the prediction of best fiber volume fractions and the minimal mass of the layered composite structure. The optimal values are predicted further by taking the frequency parameter as the constraint and the projected values utilized for the computation of the eigenvalue and deflections. The optimal mass of the total layered composite and the corresponding optimal volume fractions are evaluated using the particle swarm optimization by constraining the arbitrary frequency value as mass/volume minimization functions. The degree of accuracy of the optimal model has been proven through the comparison study with published well-known research data. Further, the predicted values of volume fractions are incurred for the evaluation of the eigenvalue and the deflection data of the composite structure. To obtain the structural responses i.e. vibrational frequency and the central deflections the proposed higher-order polynomial FE model adopted. Finally, a series of numerical experimentations are carried out using the optimal fibre volume fraction for the prediction of the optimal frequencies and deflections including associated structural parameter.