• Title/Summary/Keyword: a inverse kinematics

Search Result 327, Processing Time 0.023 seconds

Generation of Constant Orientation in Industrial Robots (산업용 로봇의 일정한 방향성 생성)

  • 이승황;양승한;박용국
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • In general there are many degrees of freedom(DOFs) in industrial robots. So they have many poses of several special end-effectors positions and orientations. For that reason, industrial robots are used in a wide scope of industrial applica-tions such as welding, spray painting, deburring, and so on. In this research, an off-line continuous path planning method based on linear interpolation with parabolic blend is developed. The method safely maintains the constant orientation for base frame and end-effectors path within allowable error and minimizes the number of segments in path. This algorithm may apply to welding and painting in which the orientation is particularly significant. The simulation study of cartesian curve is carried out to show the performance of this algorithm.

  • PDF

Neural optimization networks with fuzzy weighting for collision free motions of redundant robot manipulators

  • Hyun, Woong-Keun;Suh, Il-Hong;Kim, Kyong-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.564-568
    • /
    • 1992
  • A neural optimization network is designed to solve the collsion-free inverse kinematics problem for redundant robot manipulators under the constraints of joint limits, maximum velocities and maximum accelerations. And the fuzzy rules are proposed to determine the weightings of neural optimization networks to avoid the collision between robot manipulator and obstacles. The inputs of fuzzy rules are the resultant distance, change of the distance and sum of the changes. And the output of fuzzy rules is defined as the capability of collision avoidance of joint differential motion. The weightings of neural optimization networks are adjusted according to the capability of collision avoidance of each joint. To show the validities of the proposed method computer simulation results are illustrated for the redundant robot with three degrees of freedom,

  • PDF

Development of Omni-Directional Mobile Robot System with Rocker-Bogie Link Structure (로커-보기 링크 구조를 갖는 전방향 이동로봇 시스템개발)

  • Gang Taig-Gi;Yi Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.679-685
    • /
    • 2006
  • In this paper, development of an omni-directional mobile robot with rocker-bogie link structure is addressed. The overall mobile robot system consists of the robot mechanism with embedded control architecture, wireless communication with host graphic monitoring system, and the joy stick tole-controller. In the cluttered environment with various sizes of obstacles, the omni-directionality and the traversality are required for a mobile robot, so that the robot call go around or climb over the obstacles according to the size. The mobile robot mechanism developed in this paper has both of the omni-directionality and the traversality by 4 steerable driving wheels and the 2 additional passive omni-directional wheels linked with the rocker-bogie structure. The kinematic modeling for the mobile robot is described based on the well-known Sheth-Uicker convention and the instantaneous coordinate system.

Kinematic Modeling of Mobile Robots by Transfer Method of Augmented Generalized Coordinates (확장된 좌표계 전환기법에 의한 모바일 로봇의 기구학 모델링)

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.233-242
    • /
    • 2002
  • A kinematic modeling method is proposed which models the sliding and skidding at the wheels as pseudo joints and utilizes those pseudo joint variables as augmented variables. Kinematic models of various type of wheels are derived based on this modeling method. Then, the transfer method of augmented generalized coordinates is applied to obtain inverse and forward kinematic models of mobile robots. The kinematic models of five different types of planar mobile robots are derided to show the effectiveness of the proposed modeling method.

Dynamics Analysis and Control of Five Bar Parallel Robot (5-bar 병렬 로봇의 동역학 해석 및 제어)

  • Chung, Young-Hoon;Lee, Jae-Won;Joo, Hae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.529-535
    • /
    • 2000
  • This paper propose the method to obtain the inverse kinematics and the Jacobian of the 5-bar parallel robot and apply the nonlinear controller to the 5-bar parallel robot with the dynamic analyses using the Jacobian of the Passive joints with respect to the active ones and singular value decomposition(SVD). It also experimentally shows that we can do high-speed and accuracy tasks using nonlinear control method. And it explains the relation between the property of the position control and manipulability using a new performance index.

  • PDF

Optimal Collision-Free Path Planning of Redundant Robotic Manipulators (여유 자유도를 갖는 Robot Manipulator 최적 충돌 회피 경로 계획에 관한 연구)

  • 장민근;기창두;기석호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.743-747
    • /
    • 1996
  • A Potential Field Method is applied to the proposed algorithm for the planning of collision-free paths of redundant manipulators. The planning is carried out on the base of kinematic configuration. To make repulsive potentials, sources are distributed on the boundaries of obstacles. To escape from local minimum of the main potential and to attack other difficulties of the planning, various potentials are defined simultaneously, Inverse Kinematics Problems of the redundant manipulators are solved by unconstrained optimization method. Computer simulation result of the path planning is presented.

  • PDF

Development and Verication of a Robot Off-line Programming System for Die Polishing Process (금형 연마작업을 위한 로봇 오프라인 프로그래밍 시스템의 개발 및 적용)

  • Kang, Sungchul;Kim, Munsang;Lee, Kyo Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.69-77
    • /
    • 1997
  • 본 논문은 금형의 마무리 연마 작업을 로봇을 이용하여 자동화하기 위한 오프라인 프로그래밍 시스템개발을 그 내용으로 하고있다. 3차원 자유곡면 형상을 갖는 금형을 연마하기 위한 로봇 작업 경로를 효율적으로 생성하기 위해서는 기존의 교시 방법이 아닌 CAD시스템과 연계된 시뮬레이션 방식의 자동 경로 생성 방법이 요구된다. 본 연구에서 개발된 금형 연마 작업을 위한 오프라인 프로그래밍 시스템은 연마 작업 시뮬레이션을 위한 기하학적 모델링 기능, 로봇의 작업 공간을 고려한 작업장 배치 기능, 연마 로봇의 효율적인 기구학 해, 3차원 그래픽 시뮬레이션, 3차원 물체간의 충돌 검사 기능 및 유기적인 관계형 데이타 베이스 기능 등으로 구성된다. 본 시스템의 시뮬레이션 결과를 로봇의 위치 보정 과정을 거쳐 로봇 작업 프로그램 으로 변환함으로써 최종적으로 실제 연마 작업이 가능한, 정확하고 안전한 로봇 프로그램을 생성하였다.

  • PDF

On-line Motion Control of Avatar Using Hand Gesture Recognition (손 제스터 인식을 이용한 실시간 아바타 자세 제어)

  • Kim, Jong-Sung;Kim, Jung-Bae;Song, Kyung-Joon;Min, Byung-Eui;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.52-62
    • /
    • 1999
  • This paper presents a system which recognizes dynamic hand gestures on-line for controlling motion of numan avatar in virtual environment(VF). A dynamic hand gesture is a method of communication between a computer and a human being who uses gestures, especially both hands and fingers. A human avatar consists of 32 degree of freedom(DOF) for natural motion in VE and navigates by 8 pre-defined dynamic hand gestures. Inverse kinematics and dynamic kinematics are applied for real-time motion control of human avatar. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line dynamic hand gesture recognition.

  • PDF

Deep Learning-Based Motion Reconstruction Using Tracker Sensors (트래커를 활용한 딥러닝 기반 실시간 전신 동작 복원 )

  • Hyunseok Kim;Kyungwon Kang;Gangrae Park;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.11-20
    • /
    • 2023
  • In this paper, we propose a novel deep learning-based motion reconstruction approach that facilitates the generation of full-body motions, including finger motions, while also enabling the online adjustment of motion generation delays. The proposed method combines the Vive Tracker with a deep learning method to achieve more accurate motion reconstruction while effectively mitigating foot skating issues through the use of an Inverse Kinematics (IK) solver. The proposed method utilizes a trained AutoEncoder to reconstruct character body motions using tracker data in real-time while offering the flexibility to adjust motion generation delays as needed. To generate hand motions suitable for the reconstructed body motion, we employ a Fully Connected Network (FCN). By combining the reconstructed body motion from the AutoEncoder with the hand motions generated by the FCN, we can generate full-body motions of characters that include hand movements. In order to alleviate foot skating issues in motions generated by deep learning-based methods, we use an IK solver. By setting the trackers located near the character's feet as end-effectors for the IK solver, our method precisely controls and corrects the character's foot movements, thereby enhancing the overall accuracy of the generated motions. Through experiments, we validate the accuracy of motion generation in the proposed deep learning-based motion reconstruction scheme, as well as the ability to adjust latency based on user input. Additionally, we assess the correction performance by comparing motions with the IK solver applied to those without it, focusing particularly on how it addresses the foot skating issue in the generated full-body motions.

A Feasibility Study in Forestry Crane-Tip Control Based on Kinematics Model (1): The RR Manipulator (기구학적 모델 기반 임업용 크레인 팁 제어방안에 관한 연구(1): RR 매니퓰레이터)

  • Kim, Ki-Duck;Shin, Beom-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.287-301
    • /
    • 2022
  • This study aims to propose a crane-tip control method to intuitively control the end-effector vertically or horizontally for improving the crane work efficiency and to confirm the control performance. To verify the control performance based on experimental variables, a laboratory-scale crane was manufactured using an electric cylinder. Through a forward and reverse kinematics analysis, the crane was configured to output the position coordinates of the current crane-tip and the joint angle at each target point. Furthermore, a method of generating waypoints was used, and a dead band using lateral boundary offset (LBO) was set. Appropriate parameters were selected using bang-bang control, which confirmed that the number of waypoints and LBO radius were associated with positioning error, and the cylinder speed was related to the lead time. With increased number of waypoints and decreased LBO radius, the positioning error and the lead time also decreased as the cylinder speed decreased. Using the proportional control, when the cylinder velocity was changed at every control cycle, the lead time was greatly reduced; however, the actual control pattern was controlled by repeating over and undershoot in a large range. Therefore, proportional control was performed by additionally applying velocity gain that can relatively change the speed of each cylinder. Since the control performed with in a range of 10 mm, it was verified th at th e crane-tip control can be ach ieved with only th e proportional control to which the velocity gain was applied in a control cycle of 20 ms.