• Title/Summary/Keyword: a inverse kinematics

Search Result 327, Processing Time 0.023 seconds

Visral Control of Robotic Manipulators Based on Neural Network (시각정보에 의한 로보트 매니퓰레이터의 위치.자세 제어 - 신경회로망의 이용)

  • 심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1042-1046
    • /
    • 1993
  • This paper describes a control scheme for a robot manipulator system which uses visual information to position and orientate the end-effector. In this scheme, the position and orientation of the target workpiece with respect to the base frame of the robot are assumed to be unknown, but the desired relative position and orientation of the end-effector to the target workpiece are given in advance. The control scheme directly integrates visual data into the servoing process without subdividing the process into determination of the position and orientation of the workpiece and inverse kinematics calculation. A neural network system is used for determining the change in joint angles required in order to achieve the desired position and orientation. The proposed system can be control the robot so that it approach the desired position and orientation from arbitrary initial ones. Simulation for the robot manipulator with six degrees of freedom will be done. The validity and the effectiveness of the proposed control scheme will be verified by computer simulations.

  • PDF

A study on robust multivariable control of stewart platform type motion simulator (스튜어트 플랫폼 방식 운동재현기의 다변수 견실제어에 관한 연구)

  • 정규홍;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.736-741
    • /
    • 1992
  • The Stewart platform is one example of a motion simulator which generates 6 DOF motion in space by 6 actuators connected in parallel. The present SISO controllers are designed to track displacement command of each actuator computed from reference 6 DOF motion of platform by Stewart platform inverse kinematics. But this type of control can't cope with external load variation, geometric configuration of motion simulator, and different dynamic behavior of 6 DOF motion. In this paper, a multivariable controller using H- optimal control theory is designed for linerized simulator model with each actuator driving force as control input and platform 6 DOF motion as measured output. Nonlinear simulation result of the H$_{\infty}$ MIMO controller is not satisfied in steady-state characteristics. But the proposed H$_{\infty}$ + PI control scheme shows acceptable performance.e.e.

  • PDF

Kinematic Analysis and Optimal Design of 2RPR-RP Parallel Manipulator (2RPR-RP 병렬 기구의 기구학 해석 및 최적설계)

  • Nam, Yun-Joo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1509-1517
    • /
    • 2005
  • This paper presents the two degree-of-freedom(DOF) planar parallel mechanism called 2R$\underline{P}$R-RP manipulator, whose degree-of freedom is dependent on a passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed analytically: the inverse and forward kinematic problems are solved in the closed font the practical workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters and the operating limits of the actuators, the optimization of the mechanism is performed considering its dexterity and stiffness. Finally, the kinematic performances of the optimized mechanism are evaluated through comparing to the 5-bar parallel manipulator.

The Eclipse-II Parallel Mechanism for Motion Simulators

  • Kim, Jongwon;Hwang, Jae-Chul;Kim, Jin-Sung;Park, Frank C.;Cho, Young-Man
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.286-291
    • /
    • 2002
  • We present the analysis and design of a new six degree-of-freedom parallel mechanism, Eclipse-II, which can be used as a basis for general motion simulators. This mechanism allows x, y and z-axis translations and a, b and c-axis rotations. Most significantly, it presents the advantage of enabling continuous 360 degrees spinning of the platform. We first describe the computational procedures for the forward and in inverse kinematics of the Eclipse-II. Next, the complete singularity analysis is presented for the two cases of end-effector and actuator singularities. Two additional actuators are added to the original mechanism to eliminate both types of singularities with in the workspace. Some practical aspects of the prototype development are introduced.

  • PDF

역기구학을 이용한 보행분석

  • 최경임;정민근;염영일
    • Proceedings of the ESK Conference
    • /
    • 1994.04a
    • /
    • pp.136-144
    • /
    • 1994
  • In this study, the human gait trajectories during normal walking were synthesized using the inverse kinematics and optimization techniques. The synthesis based on a lower extremity model consisting of a torso and two legs. Each leg has three segments: thigh, shank, foot, and is assumed to move with six degrees-of-freedom. In order to synthesize trajectiories of this redundant system, the sum of angular displacements of articulating joints was selected as an objective function to be minimized. The proposed algorithm in this study is very useful for the analysis of human gait. For the gait analysis, the trajectories of four points in each leg should be measured. However, by using the algorithm, measuring the trajectories of two points is sufficient, and thus the experimental set-up can be simplified. The predicted joint trajectories showed a good agreement with those obtained from the experiment. The statistical analysis and graphic simula- tions are also presented.

  • PDF

Local path-planning of a 8-dof redundant robot for the nozzle dam installation/detachment of the nuclear power plants

  • Park, Ki C.;Chang, Pyung H.;Kim, Seung H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.133-136
    • /
    • 1996
  • The nozzle dam task is essentially needed to maintain and repair nuclear power plants. For this task, an 8-dof redundant robot is studied with a local path-planning method[l] which is effective to find the optimal joint path in the constrained environment. In this paper, the method[l] is improved practically with the weight matrix and efficient algorithm to find working set. The effectiveness of the proposed method is demonstrated by simulation and animation.

  • PDF

Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace (확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발)

  • Jeong, Sung Hun;Kim, Giseong;Gwak, Gyeong Min;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.

Development of a new Robot Manipulator for shoes Buffing Operation (새로운 신발버핑 작업용 로봇 매니퓰레이터 개발)

  • Hwang, Gyu-Deuk;Oh, Whan-Ju;Choi, Hyeung-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.743-748
    • /
    • 2004
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot is composed of five D.O.F. An Analysis on the forward and inverse kinematics was performed. The hardware system including electric wirings, control system, and related system was developed. Also, The teleoperating communication system was developed to shake with other related system Computer programs to track the bonding line of shoes were developed. An user-friendly graphic program was developed using C $^{++}$ language for the users.

  • PDF

Development of adaptive gait algorithm for IWR biped robot (이족보행로보트 IWR을 위한 적응걸음새 알고리즘 개발)

  • 임선호;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.113-118
    • /
    • 1993
  • This paper represents mechanical compliance & ZMP(Zero Moment Point) control algorithm for IWR(Inha Walking Robot) system. In case of walking in different environments, a biped walking robot must vary its gait(walking period or step length, etc.) according to the environments. However, most of biped walking robots do not have the capability to change their gaits or need more complex control algorithm, because ZMP cannot be defined in their control algorithm. Therefore new linear type with balancing joint is proposed which is used as an aid in balancing & ZMP control itself. In IWR system, ZMP can be defined by solving differential equations and it does not need to be predefined ZMP trajectory. Furthermore we can input the desired ZMP position. In parallel with the development, we also considered a mechanical compliance for reducing the inverse kinematics, dynamics and the control complexity. It will figure out some powerful adaptation with 3D irregular terrains.

  • PDF

Analysis of Kinematic Mapping Between an Exoskeleton Master Robot and a Human Like Slave Robot With Two Arms

  • Song, Deok-Hee;Lee, Woon-Kyu;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2154-2159
    • /
    • 2005
  • This paper presents the kinematic analysis of two robots, an exoskeleton type master robot and a human like slave robot with two arms. Two robots are designed and built to be equivalent as motion following robots. The operator wears the exoskeleton robot to generate motions, then the slave robot is required to follow after the motion of the master robot. However, different kinematic configuration yields position mismatches of the end-effectors. To synchronize motions of two robots, kinematic analysis of mapping is analyzed. The forward and inverse kinematics have been simulated and the corresponding experiments are also conducted to confirm the proposed mapping analysis.

  • PDF