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Abstract: The nozzle dam task is essentially needed to maintain and repair nuclear power plants. For
this task, an 8-dof redundant robot is studied with a local path-planning method[1] which is effective to find
the optimal joint path in the constrained environment. In this paper, the method[1] is improved practically
with the weight matrix and efficient algorithm to find working set. The effectiveness of the proposed method

is demonstrated by simulation and animation.
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1 Introduction

Installation of nozzle dam is needed to maintain and repair
nuclear power plants. The location of nozzle dam is shown in
Fig. 1. For reloading the nuclear fuel, it is needed to make
reactor vessel filled with water. This, however, causes the
water to penetrate into the steam generator, prohibiting from
performing the related task of the electric-heat pipe system.
To keep the steam generator from being submerged, it is
required to install the nozzle dam before supplying reactor
vessel with water.

At present, the installation task of nozzle dam is being
performed entirely by human operators. To install the noz-
zle dam, an operator has to enter into the steam generator
through man-way. Since the inside of the steam generator
is full of high radiation, the operator suffers from a large
amount of radiation. To remedy this problem and the re-
lated ones, usage of robot manipulators is being studied.

The robotic task in the steam generator, however, has such
problems as (1) narrow inside of steam generator, (2) very
narrow man-way, (2) relatively large nozzle dam, (3) pos-
sibility of collision with obstacles, (4) the joint limits and
kinematic singularity of the manipulator. For this task, a
seven-dof redundant manipulator on one-dof moving plat-
form, named KAEROT, was constructed at KAERI(Korea
Atomic Energy Research Institute). The platform mobility
can be regarded as additional redundancy[1}, so the manip-
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Figure 1: Location of nozzle dam in nuclear power plant
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ulator to be considered becomes an 8-dof redundant manip-
ulator.

In order to resolve kinematic redundancy, several meth-
ods have been suggested using optimization of performance
measures with adequate priority. For that purpose, how-
ever, it seems more natural and effective to use non-linear
inequality constraints. Seraji and Colbaugh[2] used inequal-
ity constraints in the configuration control scheme in which
inactive inequality constraints are ignored and only active
ones are considered as if they were one of the main tasks.
Sung et al.[3] pointed out, however, that this method, lacking
a deactivation scheme, tends to limit the existence range of
solutions, because the inequality constraints once activated
stay active even after becoming useless,

Sung et al.[3] addressed the inverse kinematic problem of
the redundant manipulators working in the circumstances
above as a constrained optimization problem. As a solution,
he proposed an inverse kinematic algorithm at velocity level
using the Kuhn-Tucker condition{4]. It remedied the prob-
lem in the configuration control since inequality constraints
can be discriminated by the Kuhn-Tucker condition whether
active or not.

Sung et al.’s method[3], however, considering only one ac-
tive inequality at a time, leaves its own limitations: When
there exist, on one hand, more than one constraints (such as
two obstacles at a time), it would have difficulty in handling
these even with sufficient dor(degree of redundancy); on the
other hand, when a manipulator has more than two dor, the
method gives limitations to the existence range of solution.
In addition, this method considers only a necessary condi-
tion of optimization resulting in algorithmic singularity, as
well as a limitation to invertible workspace.

Recently, Park and Chang[1] have remedied the aformen-
tioned problems through the formulation which takes full ad-
vantage of Lagrange multiplier method, Kuhn-Tucker condi-
tion, and active/working set method. This method can deal
with as many active constraints as the number of dor at a
time, and thus can extend to a manipulator with more than
one dor. The sufficient conditions as well as necessary ones
also were derived to get rid of any limitations to the invertible
workspace. The effectiveness of the algorithm was verified



with the two simulation examples: a 4-dof planar redundant
manipulator and a 7-dof spatial redundant manipulator.

The goal of this paper is to practically improve the method
proposed by [1] through some modifications and to apply to
a newly developed 8-dof redundant manipulator.

2 Kinematic Properties of KAEROT

The D-H(Denavit-Hatenberg) coordinate and notation of
KAEROT are shown in Fig. 2 and Table 1, respectively.
Table 2 shows the joint limits of 8-dof KAEROT.

Base Motion

Figure 2: D-H coordinate of 8-dof KAEROT

i [l o1 ] ai1 | di | 6 |
1 0° 0.0 mm 0.0 mm | 6,
2 90° | 279.5 mm 0.0 mm | 6,
3 0° | 689.3 mm 0.0 mm | 63
4 0° | 482.6 mm 0.0 mm | 8,4
5 || —90° | 133.6 mm 0.0 mm | 85
6 || —90° 0.0 mm | 375.0 mm | ¢
7 90° 0.0 mm 0.0 mm | 67

Table 1: D-H notation of 7-dof arm

axis | KAEROT Notation DH Notation

min. max. min. max.
1 -135.00 ° | 135.00 ° | -135.00 ° | 135.00 °
2 -147.18 ° | 122.82° | -156.68 ° | 113.32 °
3 -167.82° | 102.18 ° | -158.32° | 111.68 °
4 -90.00 ° 90.00 ° -90.00 ° 90.00 °
5 -90.00 ° 90.00 ° | -180.00 ° 0.00 °
6 -90.00 ° 90.00 ° | -180.00 ° 0.00 °
7 -90.00 ° 90.00 ° 0.00 ° | 180.00 °
8 0 mm | 500 mm 0 mm | 500 mm

Table 2: Joint limits of 8-dof KAEROT

3 Path-Planning Method

3.1 Review of [1}

The kinematic equation of redundant manipulators is given
in general as follows:

f0)== (1)

where z denotes an m-dimensional vector representing the
location of end effector w.r.t. the base coordinate system
in the workspace, # an n-dimensional vector representing
joint variables, and f a vector consisting of m scalar func-
tions, with m < n. Both the joint-limits and obstacles to be
avoided may be represented by p inequality constraints such
as
r(0) <O0(€R”) or Ri(6)<0(i=1,---,p) (2
where r = 0 corresponds to the boundary of the obstacle,
and r < 0 the permissible region outside of that boundary.
Furthermore, when an additional performance is desired, one
can achieve it by maximizing a performance measure such as
the manipulability measure under the constraints (1) and (2).
Therefore, the inverse kinematic problem of a redundant
manipulator under kinematic constraints such as joint-limits
and obstacles becomes a constrained optimization problem
of the following form:

H(6)
e subject to f(@) ==z, r(@)<0 3)
where € R™, HeER!, fER™, reR®, and H, f,r € C°.

An index set of active inequality constraints is so-called
an active set and is defined as

A={i:Ri(8) = 0)}. (4)

The index set of this active inequality constraints, which is
used for the algortihm, is defined as

W = {i: Ri(6) = 0, <0} G

and is denoted a working set.
where R; is an i** element of r. To solve this problem, a
Lagrange function L is defined as follows:

L\ p)=H@O) + X (f(0) —z)+pu"r(0)  (6)

where A € R™, u € R?.

By using the Lagrange multiplier method, Kuhn-Tucker
condition, and working set method, the following necessary
conditions are derived:

® maximize

@ = =z (eRr™)
ru(0) = 0 (eRY)
Z,VH = 0 (€R"m ) M

where r,, is a w-dimensional vector consisting of inequality
constraints in the working set, and Z,, € R~ wIxn g 5
null space matrix of the extended task space spanned by f
and r.,. As the parameters for judging whether the corre-
sponding inequality constraints are included in the working
set or not, the Lagrange multiplier for minimization is de-
fined as:

il

~S(Jewd D) ' JWwVH > 0forie W (8)
OforigWw (9)

By
i

where S = [0uxm Tuwxw] € R¥*™+%) The sufficient condi-
tion for minimization is that

Z.,(VL)zZT (10)

is positive definite.
Through these formulations, an inverse kinematic algo-
rithm using gradient projection is derived as follows:

6=Js, ( £ ) +kn(I =~ J5,Je)VH (11)

0

where J:w = sz(JewJZw)_l'
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3.2 Modified Algorithm with Weight Matrix

In this section, the aforementioned algorithm is modified
with weight matrix. As is well known, there are two ba-
sic reasons for using the weight matrix. Firstly, the in-
verse kinematic algorithm (11) has a kind of disagreement
with a view point of the metric unit. For example, the
pseudo-inverse methods resulted from the minimization of

joint velocity norm 6" 6. But, this norm has a dimension of
[rad®/s* + mm?/s?] in this case, since one of the joints is
prismatic.

Secondly, each joint may need different weighting for the
movement. Thus, the weighted norm 6" M6 can be dimen-
sionless and can give some desirable weighting to the joints
by introducing the weight matrix M.

Then, the modified method is as follows:

0 JewM ( 0 ) +kh(1 JewMJewM)VH (12)
where
JewM - _IJZw(JewM—IJZw)—l' (13)
Similarly, the Lagrange multiplers are obtained as:
I‘w :_S(JEWM—IJZw)_IJewM_IVHZ0 (14)

3.3 Effective Algorithm to Find Working Set

There may be two approaches to use the active set in a prac-
tical sense. The one is to consider that the inequality con-
straints have a kind of safety factor for obstacles. This can
be done by using the larger boundary for the obstacles than
real one as follows:

R} <100
R, <98

With the predefined active set (4) as a detection measure
of collision, slight penetration into the boundary cannot be
avoided. But, if the boundary has sufficient safety factors,
no collision can occur in reality. This needs careful selection
of the safety factor depending upon obstacles, task speed,
and sampling rate, etc.

The other method is not to use the safety factors. This
needs to inspect whether the robot meets any limits or not
before the robot proceeds. This paper selects this second
method. For this end, active set should be redefined in a
practical sense as follows:

e real boundary of obstacle :

e boundary with safety factor :

A= {i|R; >0} (15)

Hence the goal of avoiding obstacles including joint limits
becomes to make A = {} for all ¢ in this paper.

The procedures to find working set is as follows:
START :

1. Find the optimal initial joint pose 8(0) and initial Work-
ing Set W (0).

2. Let W =W(0) and £ =0.

BASIC :
1. Find next joint pose @ from z(k), 60(k), W.
2. Obtain p and A from 8 and W.

o If W = {}, then
(a) If A= {}, then

—9k+1)=0, Wk)=W, plk+1)=p

— k=k+1 and go to BASIC.
(b) If A# {}, then
— W = A and goto BASIC .
o W # {}, then
(a) A={}, then
i. If u; <0 for all j € W, then
- 0k+1) =6, W(k)=W,puk+1)=p.
— k=k+1 and go to BASIC .
ii. If p; =0 for j € W, then
A . Ifj¢ W(k—1), then

— O(k+1) =0, W(k) =W, plk+1) =
— k=k+1 and goto BASIC
B. If j € W(k — 1), then

— 0(k+1) =0, W(k) =W, uk+1)=p
~ E={jlu; =0}, W=W(k-1) -
— k=k+1 and go to BASIC.

C. If u; > 0(j € W(k)), then

- E={jly >0} W=W(k-1)-
— go to BASIC
(b) If A # {}, then
i. If we < n—m, then
~-W=W(k-1)+A
-~ goto BASIC
ii. If wy =n — m, then
— E={j|R; CRi, je W(k), i € A}
-W=Wk-1)-E+A
~ go to BASIC

4 Simulation

The goal of the simulation example is to move and to place
a nozzle dam from the narrow manway to the nozzle ring
dexterously without colliding with obstacles and joint lim-
its. For this purpose, the inequality constraints for the joint
limits of KAEROT are described as:

Rai—1 = oi,min —0; S 0 (1, = 1’2’ .. ’8)

Ryi = 6i—0ime<0(i=1,2,---,8) (16)

As a performance measure to be minimized, the sum of an
inverse of manipulability measure and a potential function
is selected for avoiding singularities and obstacles, which is
expressed as:

1.0~
Pnozzle da.m)2

17

= \/det(JJT Z (P -

where P; is a point on the manipulator, which tends to collide
with obstacles.

Fig. 3 shows the optimal joint motion of KAEROT when
using the proposed method. Through the animation per-
formed, it was observed that no collision with obstacles and
joint limits occurred. The corresponding optimal joint tra-
jectory is shown in Fig. 4. Fig. 5 shows working set and
positive Lagrange multipliers.

According to the transition of the working set (0,0) =
(8,0) = (8,16) => (8,0) with the joint path, it is shown that

135



two dor are effectively used to satisfy the 8-th and the 16-th
inequality constraints. But the platform motion appears to
be negligible compared with the result of [1] which showed
excellent platform mobility. This may come from the perfor-
mance of 7-dof redundant arm, i.e 7-dof redundant arm even
without the platform redundancy is sufficient to perform the
given task.

5 Conclusion

This paper considers the improvement of a local path-
planning method[1] with inequality constraints and its ap-
plication to a newly developed 8-dof redundant manipulator
for the nozzle dam task of nuclear power plants. The im-
provement has been done with the weight matrix and an
effective algorithm to find working set. The effectiveness of
the proposed method has been verified through the success-
ful results of application by using simulation and animation.

REFERENCES

[1] K.C. Park and P.H. Chang, “Kinematic Control of Re-
dundant Manipulators in a Constrained Environment
and its Application to a Nozzle Dam Task for a Nuclear
Power Plant,” Proc. KACC, pp.1162-1165, 1995.

H. Seraji and R. Colbaugh, “Improved Configuration
Control for Redundant Robots,” J. Robotic Systems,
Vol.7, No.6, pp.897-928, 1990.

Y. W. Sung, D.K. Cho, M.J. Chung and K. Kok, “A
Constraints-based Method of the Inverse Kinematics for
Redundant Manipulators,” IROS, pp.531-538, 1994.

D.G. Luenberger, Linear and Nonlinear Programming,
2nd ed. Addison-Wesley Publishing Company, 1984.

2]

3]

(4]

KAEROT {c) Time = 0.00 sec KAEROT (b) Time = 2.59 sec

F -

KAEROT {c) Time = 5.39 sec KAEROT (d) Time = 8.32 sec

Figure 3: Optimal Joint Motion of KAEROT
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Figure 4: Optimal Joint Trajectory
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Figure 5: Working set, Lagrange multipliers



