• 제목/요약/키워드: a hydraulic system

검색결과 2,695건 처리시간 0.038초

PID 제어 기술을 이용한 비선형 유압 시스템의 강인 제어 (Robust Control of the Nonlinear Hydraulic Servo System Using a PID Control Technique)

  • 유삼현;이종원
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.850-856
    • /
    • 2001
  • Even though the hydraulic servo system has been widely used in industrial and military equipments since it has a lot of advantages, it is not easy to design controller due to the high nonlinearities and the parametric uncertainties. The dynamic behavior of the real process in the hydraulic servo system differs from that described by its model because the model is linearized. Another reason of the difference is caused by the variety of parameters, since the system parameters of the dynamic equation are affected by the operating conditions such as temperature and pressure. In this study, the designing process of the MRNC with a PID compensator is introduced and applied to the load sensing hydraulic servo system. The results show that the designed controller guarantees the robust control performance despite of both the nonlinearities and the parametric uncertainties.

지게차 자동변속기의 클러치 직접 제어 유압 시스템 모델링 및 해석 (The Hydraulic System Modeling and Analysis of the Clutch Direct Control of an Automatic Transmission for a Forklift Truck)

  • 오주영;이근호;송창섭
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.112-119
    • /
    • 2009
  • An automatic transmission of construction equipment is controlled by hydraulic and electronic system for doing in various functions like as shifting and operation. The shifting is operated by the engaged and disengaged clutch motion from hydraulic power. On the shifting process, suitable pressure control to the clutch is required for smooth shifting. Hydraulic control system in the automatic transmission is divided by the pilot control type and the direct control type greatly. The direct control type has an advantage than the pilot control type. Because the structure is simple, the design and the manufacture are having less troubles and the system can be maximized precision pressure control. However, the excellent performance proportional control valve should be used to achieve proper control-ability. In this study, the dynamic analysis model composing the automatic transmission and hydraulic system for forklift truck is presented to simulate the characteristics of hydraulic system about the direct control type. That model is verified the validity compared the results of the testing examination. Parameters of input signal are analyzed to reduce the output torque according to input control signal is affected in shifting characteristic.

모듈화를 이용한 유압 시스템의 특성해석 및 설계 시스템의 개발에 관한 연구 (A Study on Development of the Characteristic Analysis and CAD System for Hydraulic System Using Modular Approach)

  • 이용주;송창섭
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.40-48
    • /
    • 1997
  • In this study, an analysis and design for hydraulic control system was developed. By using this system, the operator is able to simulate dynamic performance of the system without possessing special knowledge of software or control engineering. A graphical user interface was adopted in the system and all speration for simulation can be done by using window facilities on the display. The electro-hydraulic servo system is simulated to present the performances of the program and compared with the result of Matlab and experiment.

  • PDF

낙동강변 실트질 모래의 수리전도도와 전기적 물성과의 관계 (A Relationship between Hydraulic Conductivity and Electrical Properties of Silty Sand on the Riverside of the Nakdong River)

  • 김수동;박삼규;함세영;오윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.39-46
    • /
    • 2014
  • Hydraulic conductivity is an important parameter, representing permeable property of the groundwater in aquifers, in the issues of groundwater development, groundwater contamination, and groundwater flow, etc. We estimated a relationship between hydraulic conductivity and electrical properties (formation factor, chargeability, and time constant) of silty sand in the laboratory. For this study, we conducted grain size analysis, constant head permeameter test, and measured electrical resistivity and spectral induced polarization of silty sand samples collected from the riverside alluvium of the Nakdong River in Nogok-ri area, Dasan-myeon, Goryeong-gun in Gyeongbook Province, Korea. In the laboratory test, we used soil samples of approximately uniform porosity with 0.5% error range, and kept the electrical resistivity of pore water with 100 ohm-m. As a result, the relationship between effective particle size and hydraulic conductivity agrees fairly well with the existing empirical formulas. Hydraulic conductivity was correlated with formation factor, chargeability, and time constant: hydraulic conductivity increased with increasing formation factor and time constant as well as with decreasing chargeability.

파워스티어링 펌프의 자동 성능 시험기 개발에 관한 연구 (A Study on the Development of the Automatic Performance­Test­machine for Power Steering Pump)

  • 정재연;정석훈
    • Tribology and Lubricants
    • /
    • 제19권6호
    • /
    • pp.335-341
    • /
    • 2003
  • Recently, the automotive industry is being developed rapidly. On this, a demand of high quality performance­test­machine is increased too. But it is progressive technology that must be combined hydraulic, mechanic and electronic technologies. To construct this system, the design of oil hydraulic circuit, interface skill between sensor and personal computer, data acquisition & display system and integrated control are very important skill. Moreover, reliable data is obtained with vacuum system and complex heat exchange system. Therefore, in this study, we designed a performance­test­machine by using above key technologies and we also made a integrated PC control system using personal computer which is more progressive and flexible method than PLC control.

Adaptive Control of a Single Rod Hydraulic Cylinder - Load System under Unknown Nonlinear Friction

  • Lee Myeong-Ho;Park Hyung-Bae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.251-259
    • /
    • 2005
  • A discrete time model reference adaptive control has been applied in order to compensate the nonlinear friction characteristics in a hydraulic proportional position control system. As nonlinear friction, static and coulomb friction forces are considered and modeled as dead zone and external disturbance respectively. The model reference adaptive control system consists of a cascade combination of the dead zone. external disturbance and linear dynamic block. For adaptive control experiment. the DSP(Digital Signal Processor) board has been interfaced the hydraulic proportional position control system. The experimental results show that the MRAC(Model Reference Adaptive Control) for compensation of static and coulomb friction are very effective.

차량 충돌 회피 시스템을 위한 유압브레이크 액츄에이터의 모델링 및 제어 (Modeling and Control of a Hydraulic Brake Actuator for Vehcile Collision Avoidance Systems)

  • 조영주;하성현;이경수;허승진
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.537-543
    • /
    • 2000
  • mathematical models for a hydraulic brake actuator and a brake control law for vehicle collision warning/collision avoidance (CW/CA) systems will be presented in this paper. The control law have been designed for optimzied safety and comfort. A solenoid-valve-controlled hydraulic brake actuator system for the CW/CA systems has been investigated, A nonlinear computer model and a linear model of the hydraulic brake actuator system have been developed. Both models were found to represent the actual system with good accuracy. Uncertainties in the brake actuator model have been considered in the design of the control law for the roubustness of the controller. The effects of brake control on CW/CA vehicle response has been investigated via simulations. The simulations were performed using the hydraulic brake system model and a complete nonlinear vehicle model. The results indicate that the proposed brake control law can provide the CW/CA vehicles with an opimized compromise between safety and comfort.

  • PDF

프리필용 체크밸브의 유압진동 특성에 관한 연구 (A Study on the Hydraulic Vibration Characteristics of the Prefill Check Valve)

  • 박정우;한성민;이후승;윤소남
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권3호
    • /
    • pp.8-15
    • /
    • 2021
  • A rear axle steering (RAS) system is attached to the rear of medium and large commercial vehicles that transport large cargo. The existing RAS systems are driven by electro-hydraulic actuator (EHA), and most commercialized EHAs consist of electric motors, hydraulic pumps, relief valves, prefill valves and cylinders. The prefill valve required for such EHAs is a type of check valve with extremely low cracking pressure that should not allow RAS to have noise or vibration, and the prefill valve prevents system negative pressure as well as unstable operation. Most papers on this topic rely on experiments to predict valve performance, and theoretically detailed modeling of valves or pipelines is performed, but it is very rare to evaluate hydraulic vibration characteristics by analysing everything from hydraulic pumps to valves comprehensively. In this study, we proposed an experimental circuit that can predict the performance of the prefill valve. The study also analysed the pressure-flow pulsation that is transmitted to the valve through the pipeline, and how the transmitted pressure-flow pulsation affects the valve vibration.

헤테로-시넵틱 신경회로망을 이용한 유압시스템의 진동제어 (Active vibration isolation of a hydraulic system using the hetero-synaptic neural network)

  • 정만실;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.273-277
    • /
    • 1995
  • Many hudraulic components have nonlinearities to some extent. These nonlinearities often cause the time delay, thus degrading the performance of the hydraulic control systems and making it difficult to modelthem. In this paper, a new vibration isolation control algorithm that eliminates the necessity of a sophiscated modeling of hydraulic system was proposed. The algotithm is a hybrid type control shecheme consisting of a linear controller and a hetero-synaptic neural network controller. Using this control scheme, simulations and experiments were performed for 1 DOF(Degree of freedom) and 2 DOF vibration isolation. The hybrid type control algorithm can isolate the base vibration signifcantly rather than linear control algorithm. And from the weights in hetero-synaptic neural network, we can get the 2nd equivalent differentialmodel of the hydraulic control system with on-line control operation. This equivalent model provides us with much information, such as stability and the characteristics of the control system.

  • PDF

유체 봉입 마운트의 동적 특성화를 위한 집중질량 요소를 갖는 기계적 모형의 문제점 파악과 실험 방법 개선을 통한 수력학적 모형의 타당성 확인 (A Study on Shortcomings of Mechanical Model with Lumped Mass for Dynamic Characterization of Hydraulic Mounts and Confirmation of Hydraulic Model by Improvement of Experimentations)

  • 배만석;이준화;김광준
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.393-399
    • /
    • 2003
  • Hydraulic mounts show strong1y frequency-dependent stiffness and damping characteristics in low frequency range, which result from so called inertia track dynamics. A lumped mass has been incorporated in several mechanical models of the literature to take the inertia effect of the fluid in the track into consideration. Although complex s%illness by the mechanical model showed good agreements with the measured values, there exists a critical pitfall. In this paper, the shortcomings of mechanical models with lumped mass for hydraulic founts are clearly identified by illustrating actual measurements of the stiffness parameters for a hydraulic mount. It is conclusively discussed that the inertia effect of the fluid flow through the circular track is significant but latent. As an alternative to the mechanical model, a hydraulic model is claimed to be used for further dynamic analysis of engine/mount system or whole car system.