• Title/Summary/Keyword: a higher-order shear deformation theory

Search Result 306, Processing Time 0.022 seconds

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.369-384
    • /
    • 2015
  • This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Analysis of laminated composite plates based on different shear deformation plate theories

  • Tanzadeh, Hojat;Amoushahi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.247-269
    • /
    • 2020
  • A finite strip formulation was developed for buckling and free vibration analysis of laminated composite plates based on different shear deformation plate theories. The different shear deformation theories such as Zigzag higher order, Refined Plate Theory (RPT) and other higher order plate theories by variation of transverse shear strains through plate thickness in the parabolic form, sine and exponential were adopted here. The two loaded opposite edges of the plate were assumed to be simply supported and remaining edges were assumed to have arbitrary boundary conditions. The polynomial shape functions are applied to assess the in-plane and out-of-plane deflection and rotation of the normal cross-section of plates in the transverse direction. The finite strip procedure based on the virtual work principle was applied to derive the stiffness, geometric and mass matrices. Numerical results were obtained based on various shear deformation plate theories to verify the proposed formulation. The effects of length to thickness ratios, modulus ratios, boundary conditions, the number of layers and fiber orientation of cross-ply and angle-ply laminates were determined. The additional results on the same effects in the interaction of biaxial in-plane loadings on the critical buckling load were determined as well.

Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory

  • Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.621-631
    • /
    • 2018
  • In this paper, an exact analytical solution is developed for the analysis of the post-buckling non-linear response of simply supported deformable symmetric composite beams. For this, a new theory of higher order shear deformation is used for the analysis of composite beams in post-buckling. Unlike any other shear deformation beam theories, the number of functions unknown in the present theory is only two as the Euler-Bernoulli beam theory, while three unknowns are needed in the case of the other beam theories. The theory presents a parabolic distribution of transverse shear stresses, which satisfies the nullity conditions on both sides of the beam without a shear correction factor. The shear effect has a significant contribution to buckling and post-buckling behaviour. The results of this analysis show that classical and first-order theories underestimate the amplitude of the buckling whereas all the theories considered in this study give results very close to the static response of post-buckling. The numerical results obtained with the novel theory are not only much more accurate than those obtained using the Euler-Bernoulli theory but are almost comparable to those obtained using higher order theories, Accuracy and effectiveness of the current theory.

On the free vibration behavior of carbon nanotube reinforced nanocomposite shells: A novel integral higher order shear theory approach

  • Mohammed Houssem Eddine Guerine;Zakaria Belabed;Abdelouahed Tounsi;Sherain M.Y. Mohamed;Saad Althobaiti;Mahmoud M. Selim
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • This paper formulates a new integral shear deformation shell theory to investigate the free vibration response of carbon nanotube (CNT) reinforced structures with only four independent variables, unlike existing shell theories, which invariably and implicitly induce a host of unknowns. This approach guarantees traction-free boundary conditions without shear correction factors, using a non-polynomial hyperbolic warping function for transverse shear deformation and stress. By introducing undetermined integral terms, it will be possible to derive the motion equations with a low order of differentiation, which can facilitate a closed-form solution in conjunction with Navier's procedure. The mechanical properties of the CNT reinforcements are modeled to vary smoothly and gradually through the thickness coordinate, exhibiting different distribution patterns. A comparison study is performed to prove the efficacy of the formulated shell theory via obtained results from existing literature. Further numerical investigations are current and comprehensive in detailing the effects of CNT distribution patterns, volume fractions, and geometrical configurations on the fundamental frequencies of CNT-reinforced nanocomposite shells present here. The current shell theory is assumed to serve as a potent conceptual framework for designing reinforced structures and assessing their mechanical behavior.

Free vibration characteristics of three-phases functionally graded sandwich plates using novel nth-order shear deformation theory

  • Pham Van Vinh;Le Quang Huy;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 2024
  • In this study, the authors investigate the free vibration behavior of three-phases functionally graded sandwich plates using a novel nth-order shear deformation theory. These plates are composed of a homogeneous core and two face-sheet layers made of different functionally graded materials. This is the novel type of the sandwich structures that can be applied in many fields of mechanical engineering and industrial. The proposed theory only requires four unknown displacement functions, and the transverse displacement does not need to be separated into bending and shear parts, simplifying the theory. One noteworthy feature of the proposed theory is its ability to capture the parabolic distribution of transverse shear strains and stresses throughout the plate's thickness while ensuring zero values on the two free surfaces. By eliminating the need for shear correction factors, the theory further enhances computational efficiency. Equations of motion are established using Hamilton's principle and solved via Navier's solution. The accuracy and efficiency of the proposed theory are verified by comparing results with available solutions. The authors then use the proposed theory to investigate the free vibration characteristics of three-phases functionally graded sandwich plates, considering the effects of parameters such as aspect ratio, side-to-thickness ratio, skin-core-skin thicknesses, and power-law indexes. Through careful analysis of the free vibration behavior of three-phases functionally graded sandwich plates, the work highlighted the significant roles played by individual material ingredients in influencing their frequencies.

Vibration Analysis of Smart Embedded Shear Deformable Nonhomogeneous Piezoelectric Nanoscale Beams based on Nonlocal Elasticity Theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Zenkour, Ashraf M.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.255-269
    • /
    • 2017
  • Free vibration analysis is presented for a simply-supported, functionally graded piezoelectric (FGP) nanobeam embedded on elastic foundation in the framework of third order parabolic shear deformation beam theory. Effective electro-mechanical properties of FGP nanobeam are supposed to be variable throughout the thickness based on power-law model. To incorporate the small size effects into the local model, Eringen's nonlocal elasticity theory is adopted. Analytical solution is implemented to solve the size-dependent buckling analysis of FGP nanobeams based upon a higher order shear deformation beam theory where coupled equations obtained using Hamilton's principle exist for such beams. Some numerical results for natural frequencies of the FGP nanobeams are prepared, which include the influences of elastic coefficients of foundation, electric voltage, material and geometrical parameters and mode number. This study is motivated by the absence of articles in the technical literature and provides beneficial results for accurate FGP structures design.

Wave propagation of bi-directional porous FG beams using Touratier's higher-order shear deformation beam theory

  • Slimane Debbaghi;Mouloud Dahmane;Mourad Benadouda;Hassen Ait Atmane;Nourddine Bendenia;Lazreg Hadji
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.43-60
    • /
    • 2024
  • This work presents an analytical approach to investigate wave propagation in bi-directional functionally graded cantilever porous beam. The formulations are based on Touratier's higher-order shear deformation beam theory. The physical properties of the porous functionally graded material beam are graded through the width and thickness using a power law distribution. Two porosities models approximating the even and uneven porosity distributions are considered. The governing equations of the wave propagation in the porous functionally graded beam are derived by employing the Hamilton's principle. Closed-form solutions for various parameters and porosity types are obtained, and the numerical results are compared with those available in the literature.The numerical results show the power law index, number of wave, geometrical parameters and porosity distribution models affect the dynamic of the FG beam significantly.

Wave propagation in functionally graded beams using various higher-order shear deformation beams theories

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • In this work, various higher-order shear deformation beam theories for wave propagation in functionally graded beams are developed. The material properties of FG beam are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, the governing equations of the wave propagation in the FG beam are derived by using the Hamilton's principle. The analytic dispersion relations of the FG beam are obtained by solving an eigenvalue problem. The effects of the volume fraction distributions on wave propagation of functionally graded beam are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

A refined functional and mixed formulation to static analyses of fgm beams

  • Madenci, Emrah
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • In this study, an alternative solution procedure presented by using variational methods for analysis of shear deformable functionally graded material (FGM) beams with mixed formulation. By using the advantages of $G{\hat{a}}teaux$ differential approaches, a refined complex general functional and boundary conditions which comprises seven independent variables such as displacement, rotation, bending moment and higher-order bending moment, shear force and higher-order shear force, is derived for general thick-thin FGM beams via shear deformation beam theories. The mixed-finite element method (FEM) is employed to obtain a beam element which have a 2-nodes and total fourteen degrees-of-freedoms. A computer program is written to execute the analyses for the present study. The numerical results of analyses obtained for different boundary conditions are presented and compared with results available in the literature.

A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.313-336
    • /
    • 2017
  • This article investigates vibration behavior of magneto-electro-elastic functionally graded (MEE-FG) nanobeams embedded in two-parameter elastic foundation using a third-order parabolic shear deformation beam theory. Material properties of MEE-FG nanobeam are supposed to be variable throughout the thickness based on power-law model. Based on Eringen's nonlocal elasticity theory which captures the small size effects and using the Hamilton's principle, the nonlocal governing equations of motions are derived and then solved analytically. Then the influences of elastic foundation, magnetic potential, external electric voltage, nonlocal parameter, power-law index and slenderness ratio on the frequencies of the embedded MEE-FG nanobeams are studied.