DOI QR코드

DOI QR Code

On the free vibration behavior of carbon nanotube reinforced nanocomposite shells: A novel integral higher order shear theory approach

  • Mohammed Houssem Eddine Guerine (Artificial Intelligence Laboratory for Mechanical and Civil Structures, and Soil, Institute of Technology, University Center of Naama) ;
  • Zakaria Belabed (Artificial Intelligence Laboratory for Mechanical and Civil Structures, and Soil, Institute of Technology, University Center of Naama) ;
  • Abdelouahed Tounsi (Department of Civil and Environmental Engineering, Lebanese American University) ;
  • Sherain M.Y. Mohamed (Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz University) ;
  • Saad Althobaiti (Department of Sciences and Technology, Ranyah University Collage, Taif University) ;
  • Mahmoud M. Selim (Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz University)
  • Received : 2024.05.26
  • Accepted : 2024.06.24
  • Published : 2024.07.10

Abstract

This paper formulates a new integral shear deformation shell theory to investigate the free vibration response of carbon nanotube (CNT) reinforced structures with only four independent variables, unlike existing shell theories, which invariably and implicitly induce a host of unknowns. This approach guarantees traction-free boundary conditions without shear correction factors, using a non-polynomial hyperbolic warping function for transverse shear deformation and stress. By introducing undetermined integral terms, it will be possible to derive the motion equations with a low order of differentiation, which can facilitate a closed-form solution in conjunction with Navier's procedure. The mechanical properties of the CNT reinforcements are modeled to vary smoothly and gradually through the thickness coordinate, exhibiting different distribution patterns. A comparison study is performed to prove the efficacy of the formulated shell theory via obtained results from existing literature. Further numerical investigations are current and comprehensive in detailing the effects of CNT distribution patterns, volume fractions, and geometrical configurations on the fundamental frequencies of CNT-reinforced nanocomposite shells present here. The current shell theory is assumed to serve as a potent conceptual framework for designing reinforced structures and assessing their mechanical behavior.

Keywords

Acknowledgement

The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work through project number (TU-DSPP-2024-66).

References

  1. Abedini Baghbadorani, A. and Kiani, Y. (2021), "Free vibration analysis of functionally graded cylindrical shells reinforced with graphene platelets", Compos. Struct., 276, 114546. https://doi.org/10.1016/j.compstruct.2021.114546.
  2. Alibeigloo, A. and Jafarian, H. (2016), "Three-dimensional static and free vibration analysis of carbon nano tube reinforced composite cylindrical shell using differential quadrature method", Int. J. Appl. Mech., 08(03), 1650033. https://doi.org/10.1142/s1758825116500332.
  3. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
  4. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. http://doi.org/10.12989/cac.2020.26.3.285.
  5. Ansari, R., Torabi, J. and Faghih Shojaei, M. (2016), "Free vibration analysis of embedded functionally graded carbon nanotube-reinforced composite conical/cylindrical shells and annular plates using a numerical approach", J. Vib. Control, 24(6), 1123-1144. https://doi.org/10.1177/1077546316659172.
  6. Areias, P., Rabczuk, T. and Msekh, M. (2016), "Phase-field analysis of finite-strain plates and shells including element subdivision", Comput. Meth. Appl. Mech. Eng., 312(C), 322-350. https://doi.org/10.1016/j.cma.2016.01.020.
  7. Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells", Struct. Eng. Mech., 75(6), 659-674. https://doi.org/10.12989/sem.2020.75.6.659.
  8. Avey, M., Fantuzzi, N., Sofiyev, A.H. and Kuruoglu, N. (2021), "Nonlinear vibration of multilayer shell-type structural elements with double curvature consisting of CNT patterned layers within different theories", Compos. Struct., 275, 114401. https://doi.org/10.1016/j.compstruct.2021.114401.
  9. Baltacioglu, A.K. and Civalek, O. (2018), "Vibration analysis of circular cylindrical panels with CNT reinforced and FGM composites", Compos. Struct., 202, 374-388. https://doi.org/10.1016/j.compstruct.2018.02.024.
  10. Bhuddi, A., Gobert, M.L. and Mencik, J.M. (2015), "On the acoustic radiation of axisymmetric fluid-filled pipes using the wave finite element (WFE) method", J. Comput. Acoust., 23(03), 1550011. https://doi.org/10.1142/S0218396X15500113.
  11. Bisheh, H. (2023), "Vibration characteristics of smart laminated carbon nanotube-reinforced composite cylindrical shells resting on elastic foundations with open circuit", Struct., 51, 1622-1644. https://doi.org/10.1016/j.istruc.2023.03.110.
  12. Bisheh, H., Wu, N. and Rabczuk, T. (2020), "Free vibration analysis of smart laminated carbon nanotube-reinforced composite cylindrical shells with various boundary conditions in hygrothermal environments", Thin Wall. Struct., 149, 106500. https://doi.org/10.1016/j.tws.2019.106500.
  13. Bouazza, M. and Zenkour, A.M. (2020), "Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory", Arch. Appl. Mech., 90(8), 1755-1769. https://doi.org/10.1007/s00419-020-01694-3.
  14. Cho, J.R. (2023), "Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation", Struct. Eng. Mech., 88(5), 439-449. https://doi.org/10.12989/sem.2023.88.5.439.
  15. Civalek, O. and Baltacioglu, A.K. (2018), "Vibration of carbon nanotube reinforced composite (CNTRC) annular sector plates by discrete singular convolution method", Compos. Struct., 203, 458-465. https://doi.org/10.1016/j.compstruct.2018.07.037.
  16. Dang, V.H., Sedighi, H.M., Chan, D.Q., Civalek, O. and Abouelregal, A.E. (2021), "Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory", Struct. Eng. Mech., 78(1), 103-116. https://doi.org/10.12989/sem.2021.78.1.103.
  17. Denis, V. and Mencik, J.M. (2020), "A wave-based optimization approach of curved joints for improved defect detection in waveguide assemblies", J. Sound. Vib., 465, 115003. https://doi.org/10.1016/j.jsv.2019.115003.
  18. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  19. Dong, C. (2022), "Multi-objective optimal design of carbon and glass reinforced hybrid composites under flexural loading", J. Appl. Comput. Mech., 8(4), 1324-1331. https://doi.org/10.22055/jacm.2022.39877.3479.
  20. Duhamel, D. and Mencik, J.M. (2022), "Time response analysis of periodic structures via wave-based absorbing boundary conditions", Eur. J. Mech. A Solid., 91, 104418. https://doi.org/10.1016/j.euromechsol.2021.104418.
  21. Ebrahimi, F. and Dabbagh, A. (2021), "Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers", Def. Technol., 17(1), 212-225. https://doi.org/10.1016/j.dt.2020.01.007.
  22. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51-64. http://doi.org/10.12989/anr.2016.4.1.051.
  23. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart. Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
  24. Frikha, A., Zghal, S. and Dammak, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048.
  25. Gautier, G., Mevel, L., Mencik, J. M., Serra, R. and Dohler, M. (2017), "Variance analysis for model updating with a finite element based subspace fitting approach", Mech. Syst. Signal Pr., 91, 142-156. https://doi.org/10.1016/j.ymssp.2017.01.006.
  26. Ghazwani, M.H., Alnujaie, A., Van Vinh, P. and Sedighi, H.M. (2024), "Effects of porosity and nonlocality on the low- and high-frequency vibration characteristics of Al/Si3N4 functionally graded nanoplates using quasi-3D theory", Arch. Civil Mech. Eng., 24, 49. https://doi.org/10.1007/s43452-023-00858-6.
  27. Gia Phi, B., Van Hieu, D., Sedighi, H.M. and Sofiyev, A.H. (2022), "Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments", Acta Mechanica, 233(6), 2249-2270. https://doi.org/10.1007/s00707-022-03224-4.
  28. Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", Comput. Mater. Continua, 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660.
  29. Hamdia, K.M., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fract., 206(2), 215-227. https://doi.org/10.1007/s10704-017-0210-6.
  30. He, J.H. and Abd Elazem, N.Y. (2022), "The carbon nanotube-embedded boundary layer theory for energy harvesting", Facta Univ., Ser. Mech. Eng., 20(2), 211-235. https://doi.org/10.22190/FUME220221011H.
  31. Hou, S., Zheng, Y., Zandi, Y., Khadimallah, M.A. and Ebtekar, A. (2022), "The free vibration analysis of carbon nanotubes-reinforced deep conical shells with an intermediate ring support under various boundary conditions", Eng. Struct., 263, 114291. https://doi.org/10.1016/j.engstruct.2022.114291.
  32. Huan, D.T., Quoc, T.H., Van Tham, V. and Binh, C.T. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite plates submerged in fluid medium", Modern Mechanics and Applications: Select Proceedings of ICOMMA 2020, Springer, Singapore.
  33. Huang, B., Guo, Y., Wang, J., Du, J., Qian, Z., Ma, T. and Yi, L. (2016), "Bending and free vibration analyses of antisymmetrically laminated carbon nanotube-reinforced functionally graded plates", J. Compos. Mater., 51(22), 3111-3125. https://doi.org/10.1177/0021998316685165.
  34. Huang, Q., Gao, Y., Hua, F., Fu, W., You, Q., Gao, J. and Zhou, X. (2023), "Free vibration analysis of carbon-fiber plain woven reinforced composite conical-cylindrical shell under thermal environment with general boundary conditions", Compos. Struct., 322, 117340. https://doi.org/10.1016/j.compstruct.2023.117340.
  35. Ipek, C., Sofiyev, A., Fantuzzi, N. and Efendiyeva, S.P. (2023), "Buckling behavior of nanocomposite plates with functionally graded properties under compressive loads in elastic and thermal environments", J. Appl. Comput. Mech., 9(4), 974-986. https://doi.org/10.22055/jacm.2023.43091.4019.
  36. Jena, S.K., Chakraverty, S., Malikan, M. and Sedighi, H. (2020), "Implementation of Hermite-Ritz method and Navier's technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using bi-Helmholtz nonlocal elasticity", J. Mech. Mater. Struct., 15(3), 405-434. https://doi.org/10.2140/jomms.2020.15.405.
  37. Kamarian, S., Salim, M., Dimitri, R. and Tornabene, F. (2016), "Free vibration analysis of conical shells reinforced with agglomerated carbon nanotubes", Int. J. Mech. Sci., 108-109, 157-165. https://doi.org/10.1016/j.ijmecsci.2016.02.006.
  38. Karamanli, A. and Aydogdu, M. (2021), "Vibration behaviors of two-directional carbon nanotube reinforced functionally graded composite plates", Compos. Struct., 262, 113639. https://doi.org/10.1016/j.compstruct.2021.113639.
  39. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031.
  40. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stress., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687.
  41. Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation", Compos. Part B: Eng., 147, 169-177. https://doi.org/10.1016/j.compositesb.2018.04.028.
  42. Liew, K.M. and Alibeigloo, A. (2021), "Predicting bucking and vibration behaviors of functionally graded carbon nanotube reinforced composite cylindrical panels with three-dimensional flexibilities", Compos. Struct., 256, 113039. https://doi.org/10.1016/j.compstruct.2020.113039.
  43. Maji, P., Rout, M. and Karmakar, A. (2019), "Free vibration response of carbon nanotube reinforced pretwisted conical shell under thermal environment", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(3), 770-783. https://doi.org/10.1177/0954406219886325.
  44. Malikan, M., Dastjerdi, S., Eremeyev, V.A. and Sedighi, H.M. (2023), "On a 3D material modelling of smart nanocomposite structures", Int. J. Eng. Sci., 193, 103966. https://doi.org/10.1016/j.ijengsci.2023.103966.
  45. Malikan, M., Eremeyev, V.A. and Sedighi, H.M. (2020), "Buckling analysis of a non-concentric double-walled carbon nanotube", Acta Mechanica, 231(12), 5007-5020. https://doi.org/10.1007/s00707-020-02784-7.
  46. Mallek, H., Jrad, H., Wali, M., Kessentini, A., Gamaoun, F. and Dammak, F. (2019), "Dynamic analysis of functionally graded carbon nanotube-reinforced shell structures with piezoelectric layers under dynamic loads", J. Vib. Control, 26(13-14), 1157-1172. https://doi.org/10.1177/1077546319892753.
  47. Mallek, H., Mellouli, H., Said, L.B., Wali, M., Dammak, F. and Boujelbene, M. (2023), "Bending and free vibration analyses of CNTRC shell structures considering agglomeration effects with through-the-thickness stretch", Thin Wall. Struct., 191, 111036. https://doi.org/10.1016/j.tws.2023.111036.
  48. Meliani, M.H., Kenanda, M.A., Hammadi, F. and Belabed, Z. (2023), "Free vibration analysis of the structural integrity on the porous functionally graded plates using a novel Quasi-3D hyperbolic high order shear deformation theory", Frattura ed Integrita Strutturale, 17(64), 266-282. https://doi.org/10.3221/igf-esis.64.18.
  49. Mencik, J.M. (2021), "Model reduction based on matrix interpolation and distorted finite element meshes for dynamic analysis of 2D nearly periodic structures", Finite Elem. Anal. Des., 188, 103518. https://doi.org/10.1016/j.finel.2021.103518.
  50. Mesbah, A., Belabed, Z., Tounsi, A., Ghazwani, M.H., Alnujaie, A. and Aldosari, S.M. (2024), "Assessment of new quasi-3D finite element model for free vibration and stability behaviors of thick functionally graded beams", J. Vib. Eng. Technol., 12, 2231-2247. https://doi.org/10.1007/s42417-023-00976-8.
  51. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2024), "Nonlinear forced vibration of curved beam with nonlinear viscoelastic ends", Int. J. Appl. Mech., 16(03), 2450031. https://doi.org/10.1142/s1758825124500315.
  52. Mohammadi, H., Setoodeh, A.R. and Vassilopoulos, A.P. (2022), "Isogeometric Kirchhoff-Love shell patches in free and forced vibration of sinusoidally corrugated FG carbon nanotube-reinforced composite panels", Thin Wall. Struct., 171, 108707. https://doi.org/10.1016/j.tws.2021.108707.
  53. Msekh, M.A., Cuong, N.H., Zi, G., Areias, P., Zhuang, X. and Rabczuk, T. (2018), "Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model", Eng. Fract. Mech., 188, 287-299. https://doi.org/10.1016/j.engfracmech.2017.08.002.
  54. Nejati, M., Asanjarani, A., Dimitri, R. and Tornabene, F. (2017), "Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes", Int. J. Mech. Sci., 130, 383-398. https://doi.org/10.1016/j.ijmecsci.2017.06.024.
  55. Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Duc, N.D. (2019), "Nonlinear vibration of carbon nanotube reinforced composite truncated conical shells in thermal environment", Int. J. Struct. Stab. Dyn., 19(12), 1950158. https://doi.org/10.1142/s021945541950158x.
  56. Nguyen, T.N., Thai, C.H., Nguyen-Xuan, H. and Lee, J. (2018), "NURBS-based analyses of functionally graded carbon nanotube-reinforced composite shells", Compos. Struct., 203, 349-360. https://doi.org/10.1016/j.compstruct.2018.06.017.
  57. Nguyen, V.L., Tran, M.T., Limkatanyu, S., Mohammad-Sedighi, H. and Rungamornrat, J. (2022), "Reddy's third-order shear deformation shell theory for free vibration analysis of rotating stiffened advanced nanocomposite toroidal shell segments in thermal environments", Acta Mechanica, 233(11), 4659-4684. https://doi.org/10.1007/s00707-022-03347-8.
  58. Nguyen-Thanh, N., Zhou, K., Zhuang, X., Areias, P., Bazilevs, Y. and Rabczuk, T. (2017), "Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling", Comput. Meth. Appl. Mech. Eng., 316, 1157-1178. https://doi.org/10.1016/j.cma.2016.12.002.
  59. Pourasghar, A., Moradi-Dastjerdi, R., Yas, M.H., Ghorbanpour Arani, A. and Kamarian, S. (2016), "Three-dimensional analysis of carbon nanotube-reinforced cylindrical shells with temperature-dependent properties under thermal environment", Polym. Compos., 39(4), 1161-1171. https://doi.org/10.1002/pc.24046.
  60. Pouresmaeeli, S. and Fazelzadeh, S.A. (2016), "Frequency analysis of doubly curved functionally graded carbon nanotube-reinforced composite panels", Acta Mechanica, 227(10), 2765-2794. https://doi.org/10.1007/s00707-016-1647-9.
  61. Pouresmaeeli, S., Fazelzadeh, S.A., Ghavanloo, E. and Marzocca, P. (2018), "Uncertainty propagation in vibrational characteristics of functionally graded carbon nanotube-reinforced composite shell panels", Int. J. Mech. Sci., 149, 549-558. https://doi.org/10.1016/j.ijmecsci.2017.05.049.
  62. Qin, Z., Pang, X., Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.
  63. Quoc, T.H., Van Tham, V. and Tu, T.M. (2021), "Active vibration control of a piezoelectric functionally graded carbon nanotube-reinforced spherical shell panel", Acta Mechanica, 232(3), 1005-1023. https://doi.org/10.1007/s00707-020-02899-x.
  64. Rabczuk, T., Ren, H. and Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Comput. Mater. Contin., 59, 31-55. https://doi.org/10.32604/cmc.2019.04567.
  65. Rad, M.H.G. and Hosseini, S.M. (2023), "The modified CUF-EFG method for the dynamic analysis of GPLs-CNTs-reinforced FG multilayer thick cylindrical shells under shock loadings: A modified meshless implementation", Eng. Anal. Bound. Elem., 156, 499-518. https://doi.org/10.1016/j.enganabound.2023.08.023.
  66. Ren, H., Zhuang, X. and Rabczuk, T. (2020), "A nonlocal operator method for solving partial differential equations", Comput. Meth. Appl. Mech. Eng., 358, 112621. https://doi.org/10.1016/j.cma.2019.112621.
  67. Rezaiee-Pajand, M., Masoodi, A.R. and Rajabzadeh-Safaei, N. (2019), "Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures", Steel Compos. Struct., 30, 493-516. https://doi.org/10.12989/scs.2019.30.6.493.
  68. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021), "Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells", Thin Wall. Struct., 159, 107272. https://doi.org/10.1016/j.tws.2020.107272.
  69. Safarpour, M., Rahimi, A.R. and Alibeigloo, A. (2019), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Based Des. Struct. Mach., 48(4), 496-524. https://doi.org/10.1080/15397734.2019.1646137.
  70. Salamat, D. and Sedighi, H.M. (2017), "The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle", J. Appl. Comput. Mech., 3, 208-217. https://doi.org/10.22055/jacm.2017.12740.
  71. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Meth. Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
  72. Santo, D.R., Mencik, J.M. and Goncalves, P.J.P. (2020), "On the multi-mode behavior of vibrating rods attached to nonlinear springs", Nonlin. Dyn., 100, 2187-2203. https://doi.org/10.1007/s11071-020-05647-x.
  73. Sedighi, H.M. and Daneshmand, F. (2014b), "Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term", J. Appl. Comput. Mech., 1(1), 1-9. https://doi.org/10.22055/jacm.2014.10545.
  74. Sedighi, H.M. and Shirazi, K.H. (2011), "Using homotopy analysis method to determine profile for disk cam by means of optimization of dissipated energy", Int. J. Rev.. Mech. Eng., 5(5), 941-946.
  75. Sedighi, H.M., Changizian, M. and Noghrehabadi, A. (2014a), "Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory", Lat. Am. J. Solid. Struct., 11(5), 810-825. https://doi.org/10.1590/S1679-78252014000500005.
  76. Sedighi, H.M., Malikan, M., Valipour, A. and Zur, K.K. (2020a), "Nonlocal vibration of carbon/boron-nitride nano-hetero-structure in thermal and magnetic fields by means of nonlinear finite element method", J. Comput. Des. Eng., 7(5), 591-602. https://doi.org/10.1093/jcde/qwaa041.
  77. Sedighi, H.M., Malikan, M., Valipour, A. and Zur, K.K. (2020b), "Nonlocal vibration of carbon/boron-nitride nano-hetero-structure in thermal and magnetic fields by means of nonlinear finite element method", J. Comput. Des. Eng., 7(5), 591-602. https://doi.org/10.1093/jcde/qwaa041.
  78. Selim, B.A., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory", Compos. Struct., 156, 276-290. https://doi.org/10.1016/j.compstruct.2015.10.026.
  79. Shao, Z., Xia, Q., Xiang, P., Zhao, H. and Jiang, L. (2024), "Stochastic free vibration analysis of FG-CNTRC plates based on a new stochastic computational scheme", Appl. Math. Model., 127, 119-142. https://doi.org/10.1016/j.apm.2023.11.016.
  80. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
  81. Shen, H. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. B Eng., 43(3), 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004.
  82. Singh, S.D. and Sahoo, R. (2020), "Static and free vibration analysis of functionally graded CNT reinforced composite plates using trigonometric shear deformation theory", Struct., 28, 685-696. https://doi.org/10.1016/j.istruc.2020.09.008.
  83. Singhal, A., Mohammad Sedighi, H., Ebrahimi, F. and Kuznetsova, I. (2021), "Comparative study of the flexoelectricity effect with a highly/weakly interface in distinct piezoelectric materials (PZT-2, PZT-4, PZT-5H, LiNbO3, BaTiO3)", Wave. Random Complex Media, 31, 1780-1798. https://doi.org/10.1080/17455030.2019.1699676.
  84. Slimani, O., Belabed, Z., Hammadi, F., Taibi, N. and Tounsi, A. (2021), "A new shear deformation shell theory for free vibration analysis of FG sandwich shells", Struct. Eng. Mech., 78(6), 739-753. https://doi.org/10.12989/sem.2021.78.6.739.
  85. Sofiyev, A.H. (2023), "Nonlinear forced response of doubly-curved laminated panels composed of CNT patterned layers within first order shear deformation theory", Thin Wall. Struct., 193, 111227. https://doi.org/10.1016/j.tws.2023.111227.
  86. Sofiyev, A.H., Mammadov, Z., Dimitri, R. and Tornabene, F. (2020), "Vibration analysis of shear deformable carbon nanotubes-based functionally graded conical shells resting on elastic foundations", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.6674.
  87. Song, Z.G., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments", Int. J. Mech. Sci., 115-116, 339-347. https://doi.org/10.1016/j.ijmecsci.2016.06.020.
  88. Subramani, M. and Ramamoorthy, M. (2020), "Vibration analysis of the multi-walled carbon nanotube reinforced doubly curved laminated composite shallow shell panels: An experimental and numerical study", J. Sandw. Struct. Mater., 23(5), 1594-1634. https://doi.org/10.1177/1099636219900484.
  89. Thai, T.Q., Zhuang, X. and Rabczuk, T. (2023), "Curved flexoelectric and piezoelectric micro-beams for nonlinear vibration analysis of energy harvesting", Int. J. Solid. Struct., 264, 112096. https://doi.org/10.1016/j.ijsolstr.2022.112096.
  90. Tham, V.V., Huu Quoc, T. and Minh Tu, T. (2019), "Free vibration analysis of laminated functionally graded carbon nanotube-reinforced composite doubly curved shallow shell panels using a new four-variable refined theory", J. Compos. Sci., 3(4), 104. https://doi.org/10.3390/jcs3040104.
  91. Tham, V.V., Tran, H.Q. and Tu, T.M. (2021), "Vibration characteristics of piezoelectric functionally graded carbon nanotube-reinforced composite doubly-curved shells", J. Appl. Math. Mech., 42(6), 819-840. https://doi.org/10.1007/s10483-021-2730-7.
  92. Thang, P.T., Do, D.T.T., Lee, J. and Nguyen-Thoi, T. (2021), "Size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoshells with double curvature based on nonlocal strain gradient theory", Eng. Comput., 39(1), 109-128. https://doi.org/10.1007/s00366-021-01517-1.
  93. Thomas, B. and Roy, T. (2015), "Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures", Acta Mechanica, 227(2), 581-599. https://doi.org/10.1007/s00707-015-1479-z.
  94. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
  95. Tohidi, H., Hosseini-Hashemi, S., Maghsoudpour, A. and Etemadi, S. (2017), "Strain gradient theory for vibration analysis of embedded cnt-reinforced micro Mindlin cylindrical shells considering agglomeration effects", Struct. Eng. Mech., 62, 551-565. https://doi.org/10.12989/sem.2017.62.5.551.
  96. Wang, Q., Qin, B., Shi, D. and Liang, Q. (2017), "A semi-analytical method for vibration analysis of functionally graded carbon nanotube reinforced composite doubly-curved panels and shells of revolution", Compos. Struct., 174, 87-109. https://doi.org/10.1016/j.compstruct.2017.04.038.
  97. Xiang, P., Xia, Q., Jiang, L.Z., Peng, L., Yan, J.W. and Liu, X. (2021), "Free vibration analysis of FG-CNTRC conical shell panels using the kernel particle Ritz element-free method", Compos. Struct., 255, 112987. https://doi.org/10.1016/j.compstruct.2020.112987.
  98. Xu, H., Wang, Y., Xu, Z. and Yu, X. (2024), "Gegenbauer-Ritz method for free vibration analysis of rotating functionally graded graphene reinforced porous composite stepped cylindrical shells with arbitrary boundary conditions", Eng. Struct., 303, 117555. https://doi.org/10.1016/j.engstruct.2024.117555.
  99. Xu, J.Q. and She, G.L. (2023), "Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Struct. Eng. Mech., 87(1), 85-94. https://doi.org/10.12989/sem.2023.87.1.085.
  100. Yazdani, R., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings", Struct. Eng. Mech., 70(3), 351-365. https://doi.org/10.12989/sem.2019.70.3.351.
  101. Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Math. Model., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021.
  102. Zhang, L.W., Song, Z.G., Qiao, P. and Liew, K.M. (2017), "Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads", Comput. Meth. Appl. Mech. Eng., 313, 889-903. https://doi.org/10.1016/j.cma.2016.10.020.
  103. Zhao, J., Choe, K., Shuai, C., Wang, A. and Wang, Q. (2019), "Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions", Compos. B Eng., 160, 225-240. https://doi.org/10.1016/j.compositesb.2018.09.105.
  104. Zhao, T., Bayat, M.J., Kalhori, A. and Asemi, K. (2024), "Free vibration analysis of functionally graded multilayer hybrid composite cylindrical shell panel reinforced by GPLs and CNTs surrounded by Winkler elastic foundation", Eng. Struct., 308, 117975. https://doi.org/10.1016/j.engstruct.2024.117975.
  105. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.
  106. Zhuang, X., Guo, H., Alajlan, N., Zhu, H. and Rabczuk, T. (2021), "Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning", Eur. J. Mech. A Solid., 87, 104225. https://doi.org/10.1016/j.euromechsol.2021.104225.