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Abstract

Free vibration analysis is presented for a simply-supported, functionally graded piezoelectric (FGP) nanobeam embedded 

on elastic foundation in the framework of third order parabolic shear deformation beam theory. Effective electro-mechanical 

properties of FGP nanobeam are supposed to be variable throughout the thickness based on power-law model. To incorporate 

the small size effects into the local model, Eringen’s nonlocal elasticity theory is adopted. Analytical solution is implemented 

to solve the size-dependent buckling analysis of FGP nanobeams based upon a higher order shear deformation beam theory 

where coupled equations obtained using Hamilton’s principle exist for such beams. Some numerical results for natural 

frequencies of the FGP nanobeams are prepared, which include the influences of elastic coefficients of foundation, electric 

voltage, material and geometrical parameters and mode number. This study is motivated by the absence of articles in the 

technical literature and provides beneficial results for accurate FGP structures design.
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1. Introduction

Functionally graded materials (FGMs) have been regarded 

as one of the advanced inhomogeneous spatial composite 

materials which are composed from two or more material 

constituents including a couple of ceramic and metal in 

which their volume fractions are supposed to be changed 

continuously through the arbitrary directions. Due to owning 

flexible properties, FGMs can be erroneous for various 

engineering applications [1-7]. Recently, due to formation of 

micro- and nano- electro-mechanical systems (MEMS/NEMS) 

from various structural elements including nano-sized beams 

and plates which have extraordinary mechanical, chemical, 

and electronic properties, nano-scale engineering structures 

earned notable interest by various researchers [8-10]. The 

classical continuum theory have been failed to anticipate the 

size dependency of small scale structures due to absence of 

any material length scale parameters. Eringen’s nonlocal 

elasticity theory as one of the non-classical continuum 

theories has been introduced to attain small size influences 

in modeling of nanostructures. The nonlocal elasticity theory 

of Eringen provides a stress state at a reference point as a 

function of the strain at all neighbor points of the body and 

hence small size effects are captured.

Till to now, several literatures are devoted to mechanical 

analyses of size-dependent FG beams. Nonlinear free 
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vibration of microbeams made of FGMs has been investigated 

by Ke et al. [11] based on the modified couple stress theory 

and von Kármán geometric nonlinearity. Ansari et al. [12] 

have studied the thermal postbuckling characteristics of 

microbeams made of FGMs undergoing thermal loads based 

on the modified strain gradient theory (MSGT). Also, Eltaher 

et al. [13] have investigated the static and stability responses 

of FG nanobeams based on nonlocal continuum theory. 

Şimşek and Yurtcu [14] have recently investigated bending 

and buckling of FG nanobeam using analytical method 

by using the TBT and EBT beam models. Sharabiani and 

Yazdi [15] have studied the nonlinear free vibration of FG 

nanobeams within the framework of Euler–Bernoulli beam 

model including the von Kármán geometric nonlinearity. 

Uymaz [16] has studied the forced vibration analysis of FG 

nanobeams based on the nonlocal elasticity theory and 

using Navier method for various shear deformation theories. 

Also, Rahmani and Pedram [17] have analyzed the size effects 

on vibration of FG nanobeams based on nonlocal TBT. 

Zenkour and Abouelregal [18] have studied the vibration 

of FG nanobeams induced by sinusoidal pulse-heating via 

a nonlocal thermoelastic model. Most recently Ebrahimi 

et al. [19] have discussed the applicability of differential 

transformation method in investigations on vibrational 

characteristics of FG size-dependent nanobeams. Also, 

Ebrahimi and Salari [20] have presented a semi-analytical 

method for vibrational and buckling analysis of FG 

nanobeams with concept of neutral axis location. Zenkour 

and Abouelregal [21] have investigated thermoelastic 

interaction in FG nanobeams subjected to time-dependent 

heat flux. Ansari et al. [22] have presented an exact solution 

for the nonlinear forced vibration of FG nanobeams in 

thermal environment based on surface elasticity theory. 

Rahmani and Jandaghian [23] have presented the buckling 

analysis of FG nanobeams based on a nonlocal third-

order shear deformation theory. Also, the thermal effect 

on buckling and free vibration characteristics of FG size-

dependent Timoshenko nanobeams subjected to an in-

plane thermal loading have been investigated by Ebrahimi 

and Salari [24]. Zenkour and Sobhy [25] have presented a 

simplified shear and normal deformations nonlocal theory 

for bending of nanobeams in thermal environment. Mashat 

et al. [26] have investigated the vibration and thermal 

buckling of nanobeams embedded in an elastic medium 

under various boundary conditions.

Also, in modern technology, the utilization of piezoelectric 

materials as smart structures is of remarkable interest. 

Piezoelectric materials produce an electric current when 

they are placed under mechanical stresses. The piezoelectric 

process is also reversible, so when an electric current is applied 

to these materials, they will actually change shape slightly. 

Therefore, piezoelectrics materials can be used in micro and 

nano electromechanical systems, resonators, mechanical 

and chemical sensors. Due to this fact, the mechanical 

responses of FGP beam structures have aroused more 

interests in recent years. Doroushi et al. [27] have investigated 

the free and forced vibration characteristics of an FGPM 

beam subjected to thermo-electro-mechanical loads using 

the higher-order shear deformation beam theory. Kiani et al. 

[28] have analysed the buckling behavior of FGM beams with 

or without surface-bonded piezoelectric layers subjected to 

both thermal loading and constant voltage. Komijani et al. 

[29] have studied the free vibration of functionally graded 

piezoelectric material (FGPM) beams with rectangular cross 

sections under in-plane thermal and electrical excitations in 

pre/post-buckling regimes. Lezgy-Nazargah et al. [30] have 

suggested an efficient three-nodded beam element model 

for static, free vibration and dynamic response of FGPM 

beams. Large amplitude free flexural vibration of shear 

deformable FGM beams with surface-bonded piezoelectric 

layers subjected to thermopiezoelectric loadings with 

random material properties has been presented by Shegokar 

and Lal [31]. Therefore, it is apparent that an investigation 

for the vibrational responses of FGP nanobeams embedded 

on elastic foundation using a parabolic shear deformation 

beam theory is not yet carried out.

Several higher-order beam theories including a warping 

of the cross-section have then been suggested (Touratier 

[32], Soldatos [33], Reddy [34], Aydogdu [8]). Unlike the 

Timoshenko beam theory, which needs a shear correction 

factor the higher-order theories are more realistic, since they 

satisfy zero transverse shear stresses on the top and bottom 

boundaries of the beam. Therefore, displacement field is 

usually supposed to be cubic, giving rise to a parabolic shear 

strain and stress distributions through the thickness.

In the present study, a size-dependent higher-order 

beam model is presented based on nonlocal elasticity 

theory for the free vibration analysis of simply-supported 

FGP nanobeams embedded in elastic foundation. The 

electro-mechanical material properties of such beams are 

supposed to be spatially graded according to the power law 

model. Via Hamilton’s principle, the nonlocal equations of 

motion for the free vibration of higher order FG nanobeams 

embedded in two-parameter elastic foundation are 

obtained and are solved using Navier type method. To 

determine the effects of elastic foundation, external electric 

voltage, nonlocal parameter, power-law exponent, mode 

number and slenderness ratio on vibration responses of 

nonlocal FGP beams, extensive numerical examples are 

provided.
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2. Formulations of the problem

2.1. Material properties of FGP nanobeams

Figure 1 shows the assuming FG nanobeam that 

composed of PZT-4 and PZT-5H piezoelectric materials 

exposed to an electric potential Φ(x,z,t), with length L and 

uniform thickness h. The effective material properties of 

the FGPM nanobeam are supposed to change continuously 

in the z-axis direction (thickness direction) based on the 

power-law model. So, the effective material properties, P, 

can be stated in the following form (Komijani et al. [29]):
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where P1 and P2 denote the material properties of the bottom 

and higher surfaces, respectively. Also V1 and V2 are the 

corresponding volume fractions related by:
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where p is power-law exponent which is non-negative and 

estimates the material distribution through the thickness 

of the nanobeam and z is the distance from the mid-plane 

of the graded piezoelectric beam. Therefore, according to 

Eqs. (1) and (2), the effective electro-mechanical material 

properties of the FGP beam is defined as:
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It must be noted that, the upper surface at z=+h/2 of 

FGP nanobeam is assumed PZT-4 rich, whereas the bottom 

surface at z=-h/2 is PZT-5H rich.

2.2. Nonlocal elasticity theory for FGPM nanobeams

Contrary to the constitutive equation of classical elasticity 

theory, Eringen’s nonlocal theory (Eringen [35-37]) notes 

that the stress state at a point inside a body is regarded to 

be function of strains of all points in the neighbor regions. 

For a nonlocal homogeneous piezoelectric solid the basic 

equations with zero body force may be defined as:
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where σij, εij, Di and Ei denote the stress, strain, electric 

displacement and electric field components, respectively; 

Cijkl, ekij and κik are elastic, piezoelectric and dielectric 

constants, respectively; ϱ(|x-x'|,τ) is the nonlocal kernel 

function and |x-x'| is the Euclidean distance. τ=e0a/l is defined 

as scale coefficient, where e0 is a material constant which is 

determined experimentally or approximated by matching 

the dispersion curves of plane waves with those of atomic 

lattice dynamics; and a and l are the internal and external 

characteristic length of the nanostructures, respectively. 

Finally it is possible to represent the integral constitutive 

relations given by Eq. (4) in an equivalent differential form 

as:
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The Hamilton's principle can be stated in the following form to obtain the governing 
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where ∇2 is the Laplacian operator and e0a is the nonlocal 

parameter revealing the size influence on the response of 

nanostructures.

2.3. Nonlocal higher-order FGP nanobeam model

Based on parabolic third-order beam theory, the 

displacement components at any point of the beam are 

supposed to be in the form:
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(6)

where u is the in-plane displacement along the coordinate x 

and w is the transverse displacement in the mid-plane along 

the coordinate z, while ψ denotes the total bending rotation 

of the cross-section.

The distribution of electric potential along the thickness 

direction should be chosen to satisfy Maxwell’s equation in 

the quasi-static approximation. It is supposed to change as a 

combination of a cosine and linear variation as follows:
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where ξ=π/h. Also, V denotes the initial external electric 

voltage applied to the FGP nanobeam while ϕ(x,t) denotes 

the spatial function of the electric potential in the x-direction. 

Considering the strain–displacement relationships on the 

basis of a parabolic beam theory, the non-zero strains may 

be stated as:
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Figures: 

 
Fig. 1. Configuration of a functionally graded piezoelectric nanobeam. 
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Fig. 2. Effect of electric voltage on the variation of non-dimensional frequency of the S-S FGP nanobeam with 

respect to Winkler parameter for different values nonlocal parameter (               ). 
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Fig. 1.  Configuration of a functionally graded piezoelectric nano-
beam.
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The Hamilton's principle can be stated in the following form to obtain the governing 
equations of motion: 
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According to the defined electric potential in Eq. (7), the non-

zero components of electric field (Ex,Ez) can be obtained as:
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The Hamilton's principle can be stated in the following 

form to obtain the governing equations of motion:
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where ΠS and ΠK are the is the total strain and kinetic energies 

while ΠW denotes the work done by the external applied 

forces. The first variation of the total strain energy ΠS can be 

expressed as:
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Inserting Eqs. (8) and (10) into Eq. (12) yields:
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Inserting Eqs. (8) and (10) into Eq. (12) yields: 
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where    represent the mass inertia 
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It must also be cited that for homogeneous nanobeams,        . 
Variation of the work done due to external forces,    , can be written in the form: 
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in which  ̅      ,  ̅       and      and      denote the transverse and axial distributed 
loads and    and    are foundation parameters and    is normal forces due to external electric 
voltage   which is given by: 
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The nonlocal constitutive relations appeared in Eq. (5) for the FGPM nanobeam exposed to 
electro-mechanical loading in the one dimensional case may be rewritten as: 
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Inserting Eqs. (13), (16) and (18) in Eq. (11) and integrating by parts, and gathering the 
coefficients of   ,   ,    and   , the following governing equations are obtained: 

(13)

where N, M and Q are stress resultants. Relations between the 

axial force resultant N, the bending moment resultant M, the 

shear force resultant Q and the additional stress resultants P 

and R in one side and the stress components used in Eq. (13) 

in the other side are given by:
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The kinetic energy ΠK for graded piezoelectric nanobeam 

is formulated as:
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where ρ is the mass density. The first variation of the kinetic 

energy is presented as:
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where Ij represent the mass inertia
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Inserting Eqs. (13), (16) and (18) in Eq. (11) and integrating by parts, and gathering the 
coefficients of   ,   ,    and   , the following governing equations are obtained: 

(17)

It must also be cited that for homogeneous nanobeams, 

I1=I3=0.

Variation of the work done due to external forces, δΠW, can 

be written in the form:
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in which  ̅      ,  ̅       and      and      denote the transverse and axial distributed 
loads and    and    are foundation parameters and    is normal forces due to external electric 
voltage   which is given by: 
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The nonlocal constitutive relations appeared in Eq. (5) for the FGPM nanobeam exposed to 
electro-mechanical loading in the one dimensional case may be rewritten as: 
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Inserting Eqs. (13), (16) and (18) in Eq. (11) and integrating by parts, and gathering the 
coefficients of   ,   ,    and   , the following governing equations are obtained: 
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Inserting Eqs. (13), (16) and (18) in Eq. (11) and integrating by parts, and gathering the 
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Inserting Eqs. (13), (16) and (18) in Eq. (11) and integrating by parts, and gathering the 
coefficients of   ,   ,    and   , the following governing equations are obtained: 

 and q(x) and f(x) denote 

the transverse and axial distributed loads and kW and kP 

are foundation parameters and NE is normal forces due to 

external electric voltage V which is given by:
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Inserting Eqs. (13), (16) and (18) in Eq. (11) and integrating by parts, and gathering the 
coefficients of   ,   ,    and   , the following governing equations are obtained: 
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The nonlocal constitutive relations appeared in Eq. (5) 

for the FGPM nanobeam exposed to electro-mechanical 

loading in the one dimensional case may be rewritten as:
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Inserting Eqs. (13), (16) and (18) in Eq. (11) and integrating by parts, and gathering the 
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Inserting Eqs. (13), (16) and (18) in Eq. (11) and integrating by parts, and gathering the 
coefficients of   ,   ,    and   , the following governing equations are obtained: 

(21)

Inserting Eqs. (13), (16) and (18) in Eq. (11) and integrating 

by parts, and gathering the coefficients of δu, δw, δψ and δϕ, 

the following governing equations are obtained:
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 
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The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 
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Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 
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obtained as follows: 
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     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(25)

where 
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

. By integrating Eqs. (22)-(25) over the 

beam’s cross-section area, the force-strain and the moment-

strain of the nonlocal third-order Reddy FGP beam theory 

can be obtained as follows:
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(26)
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 
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      ̅      ̅      

(27)
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(28)
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 

     
  
       

  
                      

   
     ̅      (28) 

     
  
              (      )   ̂   

  
    (29) 

     
  
              (      )   ̂   

  
  , (30) 

 ∫ (    
    
   )             

     ( ̂      ̂   ) (
  
    )   ̆   

  
    (31) 

 ∫ (    
    
   )              

      ̅   
  
     ̅      ̅             

    
     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 
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      ̅      ̅      

(29)
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
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      ̅      ̅      

(30)
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
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      ̅      ̅      

(31)
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
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      ̅      ̅      
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(32)
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 
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Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 
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      ̅      ̅      

where μ=(e0a)2 and all quantities used in the above equations 

are defined as:
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     ̂ 

   
       

   
       (22) 

   ̅
    ̅   ̂ 

   
     ̂ 

   
      ̂ (

   
         

   )  (23) 

   ̅
     

   
      

  
            

   
      

   
       

   
      

     
   
       

   (
   
          

     )  (24) 

 ∫ *                       +     
        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 

     
  
       

  
                      

   
     ̅      (28) 

     
  
              (      )   ̂   

  
    (29) 

     
  
              (      )   ̂   

  
  , (30) 

 ∫ (    
    
   )             

     ( ̂      ̂   ) (
  
    )   ̆   

  
    (31) 

 ∫ (    
    
   )              

      ̅   
  
     ̅      ̅             

    
     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(33)
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     ̂ 

   
       

   
       (22) 

   ̅
    ̅   ̂ 

   
     ̂ 

   
      ̂ (

   
         

   )  (23) 

   ̅
     

   
      

  
            

   
      

   
       

   
      

     
   
       

   (
   
          

     )  (24) 

 ∫ *                       +     
        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 

     
  
       

  
                      

   
     ̅      (28) 

     
  
              (      )   ̂   

  
    (29) 

     
  
              (      )   ̂   

  
  , (30) 

 ∫ (    
    
   )             

     ( ̂      ̂   ) (
  
    )   ̆   

  
    (31) 

 ∫ (    
    
   )              

      ̅   
  
     ̅      ̅             

    
     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

Ebrahimi et al. / Vibration of smart embedded piezoelectric nanoscale beams 
 

 

6 

 

   
       

   
     ̂ 

   
       

   
       (22) 

   ̅
    ̅   ̂ 

   
     ̂ 

   
      ̂ (

   
         

   )  (23) 

   ̅
     

   
      

  
            

   
      

   
       

   
      

     
   
       

   (
   
          

     )  (24) 

 ∫ *                       +     
        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 

     
  
       

  
                      

   
     ̅      (28) 

     
  
              (      )   ̂   

  
    (29) 

     
  
              (      )   ̂   

  
  , (30) 

 ∫ (    
    
   )             

     ( ̂      ̂   ) (
  
    )   ̆   

  
    (31) 

 ∫ (    
    
   )              

      ̅   
  
     ̅      ̅             

    
     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(34)
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     ̂ 

   
       

   
       (22) 

   ̅
    ̅   ̂ 

   
     ̂ 

   
      ̂ (

   
         

   )  (23) 

   ̅
     

   
      

  
            

   
      

   
       

   
      

     
   
       

   (
   
          

     )  (24) 

 ∫ *                       +     
        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 

     
  
       

  
                      

   
     ̅      (28) 

     
  
              (      )   ̂   

  
    (29) 

     
  
              (      )   ̂   

  
  , (30) 

 ∫ (    
    
   )             

     ( ̂      ̂   ) (
  
    )   ̆   

  
    (31) 

 ∫ (    
    
   )              

      ̅   
  
     ̅      ̅             

    
     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(35)
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       (22) 

   ̅
    ̅   ̂ 

   
     ̂ 

   
      ̂ (

   
         

   )  (23) 

   ̅
     

   
      

  
            

   
      

   
       

   
      

     
   
       

   (
   
          

     )  (24) 

 ∫ *                       +     
        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 

     
  
       

  
                      

   
     ̅      (28) 

     
  
              (      )   ̂   

  
    (29) 

     
  
              (      )   ̂   

  
  , (30) 

 ∫ (    
    
   )             

     ( ̂      ̂   ) (
  
    )   ̆   

  
    (31) 

 ∫ (    
    
   )              

      ̅   
  
     ̅      ̅             

    
     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(36)
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      ̂ (

   
         

   )  (23) 

   ̅
     

   
      

  
            

   
      

   
       

   
      

     
   
       

   (
   
          

     )  (24) 

 ∫ *                       +     
        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 

     
  
       

  
                      

   
     ̅      (28) 

     
  
              (      )   ̂   

  
    (29) 

     
  
              (      )   ̂   

  
  , (30) 

 ∫ (    
    
   )             

     ( ̂      ̂   ) (
  
    )   ̆   

  
    (31) 

 ∫ (    
    
   )              

      ̅   
  
     ̅      ̅             

    
     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(37)

The explicit relation of the nonlocal normal force can be 

derived by substituting for the second derivative of N from 

Eq. (22) into Eq. (26) as follows:
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     ̂ 

   
       

   
       (22) 

   ̅
    ̅   ̂ 

   
     ̂ 

   
      ̂ (

   
         

   )  (23) 

   ̅
     

   
      

  
            

   
      

   
       

   
      

     
   
       

   (
   
          

     )  (24) 

 ∫ *                       +     
        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 

     
  
       

  
                      

   
     ̅      (28) 

     
  
              (      )   ̂   

  
    (29) 

     
  
              (      )   ̂   

  
  , (30) 

 ∫ (    
    
   )             

     ( ̂      ̂   ) (
  
    )   ̆   

  
    (31) 

 ∫ (    
    
   )              

      ̅   
  
     ̅      ̅             

    
     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(38)
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     )  (24) 

 ∫ *                       +     
        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 

     
  
       

  
                      

   
     ̅      (28) 

     
  
              (      )   ̂   

  
    (29) 

     
  
              (      )   ̂   

  
  , (30) 
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     ( ̂      ̂   ) (
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 ∫ (    
    
   )              

      ̅   
  
     ̅      ̅             

    
     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

Omitting 
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     )  (24) 

 ∫ *                       +     
        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 

     
  
       

  
                      

   
     ̅      (28) 

     
  
              (      )   ̂   

  
    (29) 

     
  
              (      )   ̂   

  
  , (30) 
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 ∫ (    
    
   )              

      ̅   
  
     ̅      ̅             

    
     ̆  

    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

 from Eqs. (23) and (24), we obtain the 

following equation:

Ebrahimi et al. / Vibration of smart embedded piezoelectric nanoscale beams 
 

 

6 

 

   
       

   
     ̂ 

   
       

   
       (22) 

   ̅
    ̅   ̂ 

   
     ̂ 

   
      ̂ (

   
         

   )  (23) 

   ̅
     

   
      

  
            

   
      

   
       

   
      

     
   
       

   (
   
          

     )  (24) 

 ∫ *                       +     
        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 

     
  
       

  
                      

   
     ̅         (26) 

     
  
       

  
                      

   
     ̅      (27) 
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    (32) 

where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 

    ̅
      

   
     

   
        

   
      

   
        

   
      

     (
   
          

     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

(39)

Also the explicit relation of the nonlocal bending moment can 

be derived by substituting for the second derivative of 
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        (25) 

where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 

 {                       }  ∫    {               }     
      (33) 

 {           }  ∫    {       }     
      (34) 

 { ̅     ̅     ̅   }  ∫    {      }             
      (35) 

 { ̂     ̂   }  ∫    {    }             
      (36) 

 { ̆     ̆   }  ∫ {                         }     
      (37) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 

      
  
      

  
       

   
     ̅         (  

   
       ̂ 

   
         

   
       

  
  )  (38) 

Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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     )       
   
     (39) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 

  ̅     
  
     ̅ 

  
       

   
          

   
      ̅      ̅      

 from 

the above equation into Eq. (27) and using Eq. (28) as follows:
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 
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The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 
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Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 
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force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
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The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 
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Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 
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(40)
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where 
                                                         ̅            (41) 

By substituting for the second derivative of  ̅ from Eq. (24) into Eq. (29) and using Eq. (30), 
the following expression for the nonlocal shear force is obtained: 
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where 
       ̅     ̅         ̅                  ̅             (43) 

In addition, the second derivative of the identity of Eq. (28) may be written as 
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      ̅  

    
     (44) 

Finally, based on the third-order beam theory, the nonlocal equations of motion appeared in 
Eqs. (22)-(24) for a FG piezoelectric nanobeam can be obtained by substituting for  ,  ̅ and  ̅ 
from Eqs. (38), (40) and (42), respectively, and using Eq. (44) in Eq. (24) as follows: 
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where 

  ̃     ̂            ̂          ̿     ̂     ̅      ̅      ̂     (48) 

It must be cited that inserting Eq. (25) into Eqs. (31) and (32) does not provide an explicit 
expressions for    and   . To overcome this problem, Eq. (25) can be re-expressed in terms of  , 
 ,   and   by using Eqs. (31) and (32) as: 

  ̅   
  
    ̃  

    
     ̿  

   
    ̆  

    
     ̆  

      (49) 

3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
supported FGP nanobeam has been presented on the basis the Navier’s method. The boundary 
conditions for the present simply-supported FGP beam can be identified as: 
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where 
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It must be cited that inserting Eq. (25) into Eqs. (31) and (32) does not provide an explicit 
expressions for    and   . To overcome this problem, Eq. (25) can be re-expressed in terms of  , 
 ,   and   by using Eqs. (31) and (32) as: 
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3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
supported FGP nanobeam has been presented on the basis the Navier’s method. The boundary 
conditions for the present simply-supported FGP beam can be identified as: 

where
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3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
supported FGP nanobeam has been presented on the basis the Navier’s method. The boundary 
conditions for the present simply-supported FGP beam can be identified as: 

(41)
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It must be cited that inserting Eq. (25) into Eqs. (31) and (32) does not provide an explicit 
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3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
supported FGP nanobeam has been presented on the basis the Navier’s method. The boundary 
conditions for the present simply-supported FGP beam can be identified as: 
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 
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The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 
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Omitting  ̅ from Eqs. (23) and (24), we obtain the following equation: 
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Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 
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 from Eq. 

(24) into Eq. (29) and using Eq. (30), the following expression 

for the nonlocal shear force is obtained:
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where 
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3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
supported FGP nanobeam has been presented on the basis the Navier’s method. The boundary 
conditions for the present simply-supported FGP beam can be identified as: 
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3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
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3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
supported FGP nanobeam has been presented on the basis the Navier’s method. The boundary 
conditions for the present simply-supported FGP beam can be identified as: 
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3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
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3. Solution procedure 
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3. Solution procedure 
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In this section, the analytical solution of the governing equations for free vibration of a simply-
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3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
supported FGP nanobeam has been presented on the basis the Navier’s method. The boundary 
conditions for the present simply-supported FGP beam can be identified as: 

Finally, based on the third-order beam theory, the 

nonlocal equations of motion appeared in Eqs. (22)-(24) for a 
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where  ̂          . By integrating Eqs. (22)-(25) over the beam’s cross-section area, the 
force-strain and the moment-strain of the nonlocal third-order Reddy FGP beam theory can be 
obtained as follows: 
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where          and all quantities used in the above equations are defined as: 
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The explicit relation of the nonlocal normal force can be derived by substituting for the second 
derivative of   from Eq. (22) into Eq. (26) as follows: 
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Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
second derivative of  ̅ from the above equation into Eq. (27) and using Eq. (28) as follows: 
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and using Eq. (44) in Eq. (24) as follows:
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Finally, based on the third-order beam theory, the nonlocal equations of motion appeared in 
Eqs. (22)-(24) for a FG piezoelectric nanobeam can be obtained by substituting for  ,  ̅ and  ̅ 
from Eqs. (38), (40) and (42), respectively, and using Eq. (44) in Eq. (24) as follows: 
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It must be cited that inserting Eq. (25) into Eqs. (31) and (32) does not provide an explicit 
expressions for    and   . To overcome this problem, Eq. (25) can be re-expressed in terms of  , 
 ,   and   by using Eqs. (31) and (32) as: 
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3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
supported FGP nanobeam has been presented on the basis the Navier’s method. The boundary 
conditions for the present simply-supported FGP beam can be identified as: 
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3. Solution procedure 
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3. Solution procedure 
In this section, the analytical solution of the governing equations for free vibration of a simply-
supported FGP nanobeam has been presented on the basis the Navier’s method. The boundary 
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It must be cited that inserting Eq. (25) into Eqs. (31) and 

(32) does not provide an explicit expressions for Dx and Dz. 

To overcome this problem, Eq. (25) can be re-expressed in 

terms of u, w, ψ and ϕ by using Eqs. (31) and (32) as:
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So, the displacement variables are adopted to satisfy the governing equations of motion and 
the above simply-supported boundary condition in the form: 

 {
      
      
      
      

}  ∑
{
 

          
         
         
         }

 

 
      

     (51) 

where       , and   ,   ,    and    are the unknown Fourier coefficients to be determined 
for each   value. Substituting Eqs. (51) into Eqs. (45), (46), (47) and (49), leads to the frequency 
equation 
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where { }  {           } , [ ]  is the stiffness matrix and [ ]  is the mass matrix. The 
coefficients of the symmetric stiffness matrix         are given by 
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                                ̂                                   
            ( ̂    ̂ )                     ̂              
                                        (54) 

4. Numerical results and discussions 
In this section, several numerical examples are provided for the electro-mechanical free 

vibration characteristics of FGPM nanobeams embedded in elastic medium. To achieve this end, 
the nonlocal FGP beam made of PZT-4 and PZT-5H, with electro-mechanical material properties 
listed in Table 1, is supposed. The beam geometry has the following dimensions:   (length) = 10 
nm and   (thickness) = varied. Also, the following relation is described to calculate the non-
dimensional natural frequencies: 
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where          is the moment of inertia of the cross section of the nanobeam and     . 
For verification purpose the frequency results are compared with those of nonlocal FGM 
Timoshenko beams presented by Rahmani and Pedram [17], due to the fact that any numerical 
results for the free vibration of FGP nanobeams based on the nonlocal elasticity theory do not 
exist yet. In this work, the material selection is performed as follows:          ,       , 
              for Steel and           ,        ,               for Alumina. 
Therefore, Table 2 presents the fundamental frequency of S-S FG nanobeams in comparison to 
those of Rahmani and Pedram [17]. 
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where ζ=nπ/L, and Un, Wn, Ψn and Φn are the unknown 

Fourier coefficients to be determined for each n value. 

Substituting Eqs. (51) into Eqs. (45), (46), (47) and (49), leads 

to the frequency equation
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where {∆}={Un,Ψn,Wn,Φn}T, [K] is the stiffness matrix and [M] 

is the mass matrix. The coefficients of the symmetric stiffness 

matrix kij=kji are given by
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are given by
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where       , and   ,   ,    and    are the unknown Fourier coefficients to be determined 
for each   value. Substituting Eqs. (51) into Eqs. (45), (46), (47) and (49), leads to the frequency 
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4. Numerical results and discussions 
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where          is the moment of inertia of the cross section of the nanobeam and     . 
For verification purpose the frequency results are compared with those of nonlocal FGM 
Timoshenko beams presented by Rahmani and Pedram [17], due to the fact that any numerical 
results for the free vibration of FGP nanobeams based on the nonlocal elasticity theory do not 
exist yet. In this work, the material selection is performed as follows:          ,       , 
              for Steel and           ,        ,               for Alumina. 
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4. Numerical results and discussions

In this section, several numerical examples are provided 

for the electro-mechanical free vibration characteristics of 

FGPM nanobeams embedded in elastic medium. To achieve 

this end, the nonlocal FGP beam made of PZT-4 and PZT-

5H, with electro-mechanical material properties listed in 

Table 1, is supposed. The beam geometry has the following 

dimensions: L (length) = 10 nm and h (thickness) = varied. 

Also, the following relation is described to calculate the non-

dimensional natural frequencies:
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where I=bh3/12 is the moment of inertia of the cross section 

of the nanobeam and A=bh. For verification purpose the 

frequency results are compared with those of nonlocal FGM 

Timoshenko beams presented by Rahmani and Pedram 

[17], due to the fact that any numerical results for the free 

vibration of FGP nanobeams based on the nonlocal elasticity 

theory do not exist yet. In this work, the material selection 

is performed as follows: Em=70 GPa, νm=0.3, ρm=7800 kg/m3 

for Steel and Ec=390 GPa, νc=0.24, ρc=3960 kg/m3 for Alumina. 

Therefore, Table 2 presents the fundamental frequency of 

S-S FG nanobeams in comparison to those of Rahmani and 

Pedram [17].

Tables 3-5 present influences of various parameters such 

as elastic foundation parameters (KW, KP), external electric 

voltage (V), power-law index and nonlocal parameter (μ) on 

the 1st, 2nd and 3rd non-dimensional frequencies of the simply-

Table 1. Electro-mechanical coefficients of material properties for PZT-4 and PZT-5H (Doroushi et al. [27]).
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Table 2. Comparison of the non-dimensional fundamental frequency for a S-S FG nanobeam without elastic 
foundation for various power-law index (      ). 

                             
TBT 
[17] 

Present 
RBT  

TBT 
[17] 

Present 
RBT 

TBT 
[17] 

Present 
RBT 

TBT 
[17] 

Present 
RBT 

0 9.8296 9.829570  7.7149 7.71546  6.9676 6.967613  5.9172 5.916152 

1 9.3777 9.377686  7.3602 7.36078  6.6473 6.647300  5.6452 5.644175 

2 8.9829 8.982894  7.0504 7.05090  6.3674 6.367454  5.4075 5.406561 

3 8.6341 8.634103  6.7766 6.77714  6.1202 6.120217  5.1975 5.196632 

4 8.3230 8.323021  6.5325 6.53296  5.8997 5.899708  5.0103 5.009400 
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supported nonlocal FGP nanobeams at L/h=20. It is seen 

that when the of nonlocal parameter increases the natural 

frequencies of FGP nanobeam decreases due to the fact that 

presence of nonlocality makes the beam structure more 

flexible. Also, it is concluded that the reduction in higher 

modes due to nonlocality effect are more considerable than 

lower one modes. Contrary to the nonlocal scale parameter, 

elastic foundation has an increasing influence on the 

rigidity of the beam and hence it is deduced that with the 

rise of Winkler and Pasternak parameter the dimensionless 

frequencies of the FGP nanobeam increase. Another 

important conclusion is that effect of Pasternak elastic 

parameter on the presented first three mode results are 

more than those obtained for the Winkler parameter. So, the 

Table 3. Influence of elastic foundation and external electric voltage on the 1st non-dimensional frequency of a S-S FGP nanobeam (L/h=20).
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FGP nanobeam (      ). 

   µ                           

                                               

0 0 V=-0.5 10.7792 10.5545 10.4459  12.8623 12.6746 12.5843  14.6521 14.4877 14.4087 

  V=0 10.1627 9.79425 9.54393  12.3502 12.0488 11.8463  14.2047 13.9435 13.7688 

  V=+0.5 9.50628 8.96976 8.54726  11.8160 11.3888 11.0591  13.7428 13.3773 13.0977 

 1 V=-0.5 10.3399 10.1381 10.0467  12.4964 12.3300 12.2549  14.3321 14.1871 14.1220 

  V=0 9.69548 9.34399 9.10518  11.9687 11.6858 11.4957  13.8743 13.6310 13.4684 

  V=+0.5 9.00510 8.47582 8.05440  11.4166 11.0039 10.6827  13.4010 13.0512 12.7815 

 2 V=-0.5 9.95814 9.77671 9.70061  12.1824 12.0346 11.9728  14.0591 13.9312 13.8779 

  V=0 9.28731 8.95061 8.72186  11.6405 11.3737 11.1946  13.5922 13.3644 13.2123 

  V=+0.5 8.56408 8.04008 7.61839  11.0721 10.6719 10.3580  13.1087 12.7725 12.5114 

              

25 0 V=-0.5 11.8802 11.6768 11.5787  13.7981 13.6233 13.5393  15.4801 15.3245 15.2499 

  V=0 11.3238 10.9944 10.7720  13.322 13.0431 12.8562  15.0574 14.8112 14.6468 

  V=+0.5 10.7386 10.2667 9.89973  12.8283 12.4359 12.1347  14.6224 14.2793 14.0178 

 1 V=-0.5 11.4831 11.3018 11.2198  13.4577 13.3033 13.2337  15.1775 15.0407 14.9793 

  V=0 10.9065 10.5952 10.3852  12.9691 12.7085 12.5340  14.7461 14.5173 14.3648 

  V=+0.5 10.2976 9.83811 9.47746  12.4615 12.0845 11.7928  14.3016 13.9744 13.7229 

 2 V=-0.5 11.1406 10.9788 10.9110  13.1667 13.0300 12.9730  14.9201 14.7996 14.7494 

  V=0 10.5453 10.2500 10.0509  12.6669 12.4221 12.2583  14.4810 14.2673 14.1250 

  V=+0.5 9.91426 9.46529 9.10982  12.1466 11.7830 11.4994  14.0281 13.7144 13.4716 

              

50 0 V=-0.5 12.8875 12.7002 12.6101  14.6743 14.5101 14.4313  16.2660 16.1180 16.0471 

  V=0 12.3765 12.0758 11.8737  14.2276 13.9668 13.7925  15.8642 15.6307 15.4751 

  V=+0.5 11.8435 11.4173 11.0884  13.7664 13.4015 13.1225  15.4519 15.1277 14.8811 

 1 V=-0.5 12.5224 12.3563 12.2814  14.3547 14.2101 14.1450  15.9783 15.8484 15.7901 

  V=0 11.9958 11.7136 11.5240  13.8978 13.6549 13.4926  15.5691 15.3526 15.2084 

  V=+0.5 11.4451 11.0335 10.7131  13.4253 13.0761 12.8070  15.1488 14.8402 14.6036 

 2 V=-0.5 12.2091 12.0616 12.000  14.0823 13.9545 13.9013  15.7340 15.6197 15.5722 

  V=0 11.6684 11.4022 11.2236  13.6162 13.3887 13.2369  15.3182 15.1164 14.9821 

  V=+0.5 11.1014 10.7024 10.3893  13.1335 12.7980 12.5373  14.8908 14.5957 14.3678 

 
 
  

Table 2.  Comparison of the non-dimensional fundamental frequency for a S-S FG nanobeam without elastic foundation for various power-law 
index (L/h=20).
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shear layer of elastic foundation or Pasternak foundation has 

a significant influence on the frequency results. Moreover, 

it is observable that for all values of Winkler and Pasternak 

constants, negative electric voltages create larger frequencies 

than positive voltages.

The variations of the first fundamental frequency of FGP 

nanobeams versus the Winkler and Pasternak parameters for 

various electric voltages and nonlocal parameters at L/h=20 

and p=1 are illustrated in Figs. 2-3, respectively. It is seen 

from these figures that regardless of the sign and magnitude 

of electric voltage, the non-dimensional natural frequency 

arises with the increase of Winkler and Pasternak parameters, 

because of the increment in stiffens of the FGP nanobeam. 

As a more exact conclusion, it must be mentioned that at a 

constant electric voltage the increase of non-dimensional 

natural frequency with Pasternak parameter occurs with a 

higher rate than those of Winkler parameter. 

The effects of Winkler and Pasternak parameters on 

the variations of the first non-dimensional frequency of 

the simply-supported FG nanobeams versus power-law 

exponent for different electric voltages at L/h=20 and p=1 are 

presented in Figs. 4 and 5, respectively. It is seen that for all 

values of elastic foundation constants the non-dimensional 

frequency reduces with the increase of power-law exponent. 

But, this reduction is more sensible according to the positive 

values of external electric voltage, due to the fact that the 

reduction in the frequency occurs with a higher slope.

Figs. 6-7 show the variations the dimensionless frequency 

of nonlocal FGP beams with respect to external voltage at L/

h=20 and p=1 for various nonlocal parameters with changing 

of Winkler and Pasternak constants. It is seen that although 

Winkler and Pasternak parameters cause increment in 

natural frequency, but external electric voltage has a reducing 

influence on the natural frequencies of FG nanobeams when 

Table 4. Influence of elastic foundation and external electric voltage on the 2nd non-dimensional frequency of a S-S FGP nanobeam (L/h=20).
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Table 4. Influence of elastic foundation and external electric voltage on the 2nd non-dimensional frequency of a S-S 
FGP nanobeam (      ). 

                               

                                               

0 0 V=-0.5 41.0434 39.7276 38.8856  43.3634 42.1201 41.3269  45.5655 44.3838 43.6318 

  V=0 40.4132 38.9457 37.9525  42.7674 41.3834 40.4502  44.9986 43.6853 42.8023 

  V=+0.5 39.7729 38.1477 36.9959  42.1629 40.6334 39.5540  44.4246 42.9755 41.9565 

 1 V=-0.5 34.9612 33.8965 33.2325  37.6579 36.6714 36.0586  40.1739 39.2507 38.6787 

  V=0 34.2192 32.9766 32.1357  36.9700 35.8228 35.0503  39.5298 38.4590 37.7405 

  V=+0.5 33.4606 32.0303 31.0001  36.2690 34.9537 34.0122  38.8750 37.6508 36.7784 

 2 V=-0.5 31.0479 30.1509 29.6071  34.0558 33.2400 32.7476  36.8188 36.0655 35.6122 

  V=0 30.2099 29.1129 28.3705  33.2936 32.3014 31.6339  36.1150 35.2023 34.5909 

  V=+0.5 27.5679 28.0365 27.0774  30.4797 31.3347 30.4797  35.3971 34.3174 33.5385 

              

25 0 V=-0.5 41.3444 40.0385 39.2032  43.6485 42.4135 41.6259  45.8369 44.6623 43.9151 

  V=0 40.7189 39.2628 38.2779  43.0564 41.6820 40.7556  45.2734 43.9683 43.0911 

  V=+0.5 40.0835 38.4714 37.3296  42.4560 40.9374 39.8663  44.7028 43.2631 42.2510 

 1 V=-0.5 35.3142 34.2604 33.6036  37.9857 37.0080 36.4008  40.4814 39.5653 38.9980 

  V=0 34.5797 33.3505 32.5193  37.3039 36.1674 35.4023  39.8423 38.7801 38.0677 

  V=+0.5 33.8292 32.4151 31.3975  36.6093 35.3067 34.3748  39.1927 37.9787 37.1140 

 2 V=-0.5 31.4448 30.5594 30.0230  34.4180 33.6110 33.1241  37.1541 36.4077 35.9587 

  V=0 30.6176 29.5357 28.8043  33.6640 32.6831 32.0236  36.4567 35.5528 34.9475 

  V=+0.5 29.7674 28.4753 27.5316  32.8927 31.7280 30.8838  35.7457 34.6769 33.9063 

              

50 0 V=-0.5 41.6433 40.3470 39.5183  43.9317 42.7049 41.9227  46.1066 44.9391 44.1966 

  V=0 41.0223 39.5774 38.6005  43.3434 41.9784 41.0587  45.5465 44.2494 43.3779 

  V=+0.5 40.3917 38.7924 37.6603  42.7471 41.2392 40.1762  44.9794 43.5488 42.5435 

 1 V=-0.5 35.6636 34.6204 33.9706  38.3108 37.3416 36.7399  40.7866 39.8775 39.3147 

  V=0 34.9364 33.7203 32.8984  37.6348 36.5086 35.7509  40.1523 39.0986 38.3920 

  V=+0.5 34.1938 32.7954 31.7900  36.9465 35.6562 34.7337  39.5079 38.3038 37.4467 

 2 V=-0.5 31.8367 30.9625 30.4333  34.7765 33.9779 33.4964  37.4864 36.7467 36.3019 

  V=0 31.0200 29.9527 29.2316  34.0304 33.0603 32.4085  36.7953 35.8999 35.3006 

  V=+0.5 30.1811 28.9075 27.9784  33.2675 32.1165 31.2828  36.0909 35.0327 34.2700 

 
 
  

(255~269)16-122.indd   262 2017-07-03   오전 9:59:46



263

Farzad Ebrahimi    Vibration Analysis of Smart Embedded Shear Deformable Nonhomogeneous Piezoelectric Nanoscale Beams ...

http://ijass.org

it varies from negative values to positive one.

Also, Fig. 8 demonstrates the variations the non-

dimensional natural frequency of FGP nanobeams versus 

electric voltage at L/h=20 and μ=2 (nm)2 for different 

material composition with and without elastic foundation. 

It is observable that as the external voltage increases from 

negative to positive values the natural frequency reduces; 

also the reduction for the higher values of power-law index 

is more significant. Moreover, difference between the 

frequency results increases with the rise of electric voltage 

from -1V to +1V, so the frequencies for negative voltages 

are more close to each other and hence it is concluded that 

regardless of magnitude of electric voltage its sign has a 

remarkable influence on the frequencies.

Figure 9 depicts the variations of the non-dimensional 

natural frequency of piezoelectric FG nanobeam with 

respect to slenderness ratio for power-law exponent p=0.2 

and nonlocal scale parameter μ=2 (nm)2. It is shown that, 

external electric voltage has an increasing influence on 

natural frequencies of FGP nonlocal beams for negative 

values of external voltage as well as a reducing effect for 

positive voltages. This is due to the axial compressive and 

tensile forces produced in the FGP nanobeams via the 

applied positive and negative voltages, respectively. Also, 

it must be mentioned that curvature of the lines for higher 

values of electric voltage is more sensible compared to 

lower voltages. In addition, it is clearly observed that 

the dimensionless natural frequency is approximately 

independent of slenderness ratio for zero electric voltages 

(V=0). The influence of nonlocal parameter as well as mode 

number on the non-dimensional frequencies of nonlocal 

FGP beams with and without elastic foundation at power-

Table 5.  Influence of elastic foundation and external electric voltage on the 3rd non-dimensional frequency of a S-S FGP nanobeam (L/h=20). 
p=1,L/h=20,KW=25
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Table 5. Influence of elastic foundation and external electric voltage on the 3rd non-dimensional frequency of a S-S 
FGP nanobeam (      ).                  

                               
                                                   

0 0 V=-0.5 90.7489 87.6146 85.5572  93.1229 90.0712 88.0712  95.4380 92.4625 90.5154 

  V=0 90.1162 86.8285 84.6181  92.5065 89.3068 87.1592  94.8365 91.7180 89.6282 

  V=+0.5 89.4790 86.0353 83.6684  91.8858 88.5357 86.2375  94.2313 90.9674 88.7322 

 1 V=-0.5 66.4467 64.2634 62.8631  69.6541 67.5743 66.2440  72.7201 70.7303 69.4606 

  V=0 65.5800 63.1875 61.5789  68.8277 66.5519 65.0266  71.9290 69.7543 68.3005 

  V=+0.5 64.7016 62.0930 60.2672  67.9913 65.5136 63.7859  71.1290 68.7643 67.1203 

 2 V=-0.5 55.1297 53.4084 52.3321  58.9560 57.3494 56.3485  62.5486 61.0364 60.0970 

  V=0 54.0819 52.1088 50.7823  57.9773 56.1412 54.9121  61.6270 59.9026 58.7523 

  V=+0.5 53.0133 50.7761 49.1835  56.9819 54.9064 53.4371  60.6915 58.7470 57.3761 

              

25 0 V=-0.5 90.8842 87.7547 85.7007  93.2548 90.2075 88.2106  95.5666 92.5953 90.6510 

  V=0 90.2524 86.9699 84.7631  92.6392 89.4442 87.3000  94.9660 91.8519 89.7652 

  V=+0.5 89.6162 86.1780 83.8151  92.0195 88.6744 86.3798  94.3616 91.1024 88.8705 

 1 V=-0.5 66.6314 64.4543 63.0583  69.8303 67.7558 66.4292  72.8889 70.9038 69.6372 

  V=0 65.7670 63.3816 61.7780  69.0060 66.7363 65.2152  72.0996 69.9302 68.4801 

  V=+0.5 64.8912 62.2905 60.4707  68.1718 65.7009 63.9782  71.3016 68.9428 67.3031 

 2 V=-0.5 55.3521 53.6379 52.5664  59.1640 57.5632 56.5661  62.7447 61.2374 60.3011 

  V=0 54.3085 52.3441 51.0236  58.1888 56.3596 91.7180  61.8261 60.1074 58.9610 

  V=+0.5 53.2445 91.7180 49.4327  57.1971 55.1296 53.6665  60.8936 58.9557 57.5898 

              

50 0 V=-0.5 91.0192 87.8946 85.8439  93.3864 90.3436 88.3497  95.6951 92.7279 90.7864 

  V=0 90.3884 87.1111 84.9079  92.7717 89.5815 87.4406  95.0953 91.9855 89.9019 

  V=+0.5 89.7531 86.3204 83.9615  92.1529 88.8128 86.5219  94.4917 91.2371 89.0087 

 1 V=-0.5 66.8155 64.6446 63.2528  70.0060 67.9369 66.6139  73.0572 71.0768 69.8134 

  V=0 65.9536 63.5752 61.9766  69.1838 66.9201 65.4033  72.2698 70.1056 68.6593 

  V=+0.5 65.0802 62.4874 60.6736  68.3518 65.8876 64.1699  71.4737 69.1207 67.4854 

 2 V=-0.5 55.5736 53.8665 52.7996  59.3713 57.7762 56.7829  62.9402 61.4377 60.5045 

  V=0 54.5343 52.5783 51.2638  58.3996 56.5771 55.3577  62.0245 60.3114 59.1690 

  V=+0.5 53.4748 51.2577 49.6806  57.4115 55.3520 53.8949  61.0950 59.1637 57.8028 
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Figures: 

 
Fig. 1. Configuration of a functionally graded piezoelectric nanobeam. 
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(b)           

 

(c)           
 

(d)           
Fig. 2. Effect of electric voltage on the variation of non-dimensional frequency of the S-S FGP nanobeam with 

respect to Winkler parameter for different values nonlocal parameter (               ). 
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Fig. 2.  Effect of electric voltage on the variation of non-dimensional frequency of the S-S FGP nanobeam with respect to Winkler parameter for 
different values nonlocal parameter (p=1,L/h=20,KP=5).Ebrahimi et al. / Vibration of smart embedded piezoelectric nanoscale beams 
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(b)           
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(d)           
Fig. 3. Effect of electric voltage on the variation of non-dimensional frequency of the S-S FGP nanobeam with 

respect to Pasternak parameter for different values nonlocal parameter (                ). 
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Fig. 3.  Effect of electric voltage on the variation of non-dimensional frequency of the S-S FGP nanobeam with respect to Pasternak parameter for 
different values nonlocal parameter (p=1,L/h=20,KW=25).

(255~269)16-122.indd   264 2017-07-03   오전 9:59:48



265

Farzad Ebrahimi    Vibration Analysis of Smart Embedded Shear Deformable Nonhomogeneous Piezoelectric Nanoscale Beams ...

http://ijass.org

Ebrahimi et al. / Vibration of smart embedded piezoelectric nanoscale beams 
 

 

19 

 

 

 
(a) 0.5V    

 
(b) 0V   

 

 
(c) 0.5V    

 
Fig. 4. Effect of Winkler parameter on the variation of non-dimensional frequency of the S-S FGP nanobeam with 

respect to power-law index for different values of electric voltage (               ). 
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Fig. 4.  Effect of Winkler parameter on the variation of non-dimensional frequency of the S-S FGP nanobeam with respect to power-law index for 
different values of electric voltage (μ=2,L/h=20,KP=5).
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Fig. 5. Effect of Pasternak parameter on the variation of non-dimensional frequency of the S-S FGP nanobeam with 
respect to power-law index for different values of electric voltage (                ). 

  

10

12

14

16

18

20

0 2 4 6 8 10

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y 

Power-law exponent 

Kp=0
Kp=5
Kp=10
Kp=15

9

11

13

15

17

19

0 2 4 6 8 10

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y 

Power-law exponent 

Kp=0
Kp=5
Kp=10
Kp=15

8

10

12

14

16

18

20

0 2 4 6 8 10

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y 

Power-law exponent 

Kp=0
Kp=5
Kp=10
Kp=15

Fig. 5.  Effect of Pasternak parameter on the variation of non-dimensional frequency of the S-S FGP nanobeam with respect to power-law index for 
different values of electric voltage (μ=2,L/h=20,KW=25).
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(d)           
Fig. 6. Effect of Winkler parameter on the variation of non-dimensional frequency of the S-S FGP nanobeam with 

respect to electric voltage for different values nonlocal parameter (               ). 
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Fig. 6.  Effect of Winkler parameter on the variation of non-dimensional frequency of the S-S FGP nanobeam with respect to electric voltage for 
different values nonlocal parameter (p=1,L/h=20,KP=5).
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(b)           
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(d)           
Fig. 7. Effect of Pasternak parameter on the variation of non-dimensional frequency of the S-S FGP nanobeam with 

respect to electric voltage for different values nonlocal parameter (                ). 
  

8

10

12

14

16

18

20

-1 -0.5 0 0.5 1

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y 

Voltage (V) 

Kp=0
Kp=5
Kp=10
Kp=15

8

10

12

14

16

18

20

-1 -0.5 0 0.5 1

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y 

Voltage (V) 

Kp=0
Kp=5
Kp=10
Kp=15

8

10

12

14

16

18

20

-1 -0.5 0 0.5 1

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y 

Voltage (V) 

Kp=0
Kp=5
Kp=10
Kp=15

8

10

12

14

16

18

20

-1 -0.5 0 0.5 1

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y 

Voltage (V) 

Kp=0
Kp=5
Kp=10
Kp=15

Fig. 7.  Effect of Pasternak parameter on the variation of non-dimensional frequency of the S-S FGP nanobeam with respect to electric voltage for 
different values nonlocal parameter (p=1,L/h=20,KW=25).
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law exponent p=1, slenderness ratio L/h=20 and electric 

voltage V=+0.5 is plotted in Fig. 10. As a consequence, the 

influence of nonlocal parameter on the higher modes of 

FGP nanobeams is more prominent than lower modes. 

Therefore, as a mode number raises the difference between 

local and nonlocal frequency results of FGP nanobeams 

increase.

5. Conclusions

This article studies free vibration behavior of piezoelectric 

FG nanobeams embedded in elastic medium based on 

nonlocal higher order beam theory. Adopting Eringen’s 

nonlocal elasticity theory to capture the small size effects, 

the nonlocal governing equations are derived and solved 
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(a)         

 
(b)            

Fig. 8. Effect of material composition on the variation of non-dimensional frequency of FGP nanobeam versus 
electric voltage with and without elastic foundation (          ). 

 
 
 
 
 
 
 
 
 
 
 

 
(a)         

 
(b)            

Fig. 9. Effect of slenderness ratio on the variation of non-dimensional frequency of the S-S FGP nanobeam for 
different values of electric voltage with and without elastic foundation (                ). 
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Fig. 8.  Effect of material composition on the variation of non-dimensional frequency of FGP nanobeam versus electric voltage with and without 
elastic foundation (L/h=20,μ=2).

Ebrahimi et al. / Vibration of smart embedded piezoelectric nanoscale beams 
 

 

23 
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(b)            

Fig. 8. Effect of material composition on the variation of non-dimensional frequency of FGP nanobeam versus 
electric voltage with and without elastic foundation (          ). 
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(b)            

Fig. 9. Effect of slenderness ratio on the variation of non-dimensional frequency of the S-S FGP nanobeam for 
different values of electric voltage with and without elastic foundation (                ). 
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Fig. 9.  Effect of slenderness ratio on the variation of non-dimensional frequency of the S-S FGP nanobeam for different values of electric voltage 
with and without elastic foundation (L/h=20,μ=2,p=0.2).
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Fig. 10. Effect of mode number on the dimensionless frequency of the S-S FGP nanobeam for different values of 
external voltages (                 ). 
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Fig. 10.  Effect of mode number on the dimensionless frequency of the S-S FGP nanobeam for different values of external voltages (p=1,L/
h=20,V=+0.5).
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using analytical method. Electro-mechanical properties of 

the FGP nanobeams are supposed to be position dependent 

based on power-law model. Various numerical examples 

demonstrate the influences of elastic foundation parameters, 

external electric voltage, gradient index, nonlocal parameter, 

slenderness ratio and mode number on the natural 

frequencies of FGP nanobeams. It is observed that existence 

of nonlocality yields in reduction in both rigidity of the beam 

and natural frequencies. Unlike the nonlocal parameter, 

with the increase of Winkler or Pasternak constants the 

rigidity of the nonlocal FGP beams and the frequency results 

rise. Also, according to the sign and magnitude of the electric 

voltage, it shows both reducing and increasing influence on 

the fundamental frequencies.
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