• Title/Summary/Keyword: a genetic algorithm

검색결과 4,135건 처리시간 0.028초

유전자알고리즘을 이용한 크레인가속도 최적화 (An Optimization Technique For Crane Acceleration Using A Genetic Algorithm)

  • 박창권;김재량;정원지;홍대선;권장렬;박범석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1701-1704
    • /
    • 2003
  • This paper presents a new optimization technique of acceleration curve for a wafer transfer crane movement in which high speed and low vibration are desirable. This technique is based on a genetic algorithm with a penalty function for acceleration optimization under the assumption that an initial profile of acceleration curves constitutes the first generation of the genetic algorithm. Especially the penalty function consists of the violation of constraints and the number of violated constraints. The proposed penalty function makes the convergence rate of optimization process using the genetic algorithm more faster than the case of genetic algorithm without a penalty function. The optimized acceleration of the crane through the genetic algorithm and commercial dynamic analysis software has shown to have accurate movement and low vibration.

  • PDF

유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계 (Optimum Design of Piled Raft Foundations using Genetic Algorithm)

  • 김홍택;강인규;황정순;전응진;고용일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.415-422
    • /
    • 1999
  • This paper describes a new optimum design approach for piled raft foundations using the genetic algorithm. The objective function considered is the cost-based total weight of raft and piles. The genetic algorithm is a search or optimization technique based on nature selection. Successive generation evolves more fit individuals on the basis of the Darwinism survival of the fittest. In formulating the genetic algorithm-based optimum design procedure, the analysis of piled raft foundations is peformed based on the 'hybrid'approach developed by Clancy(1993), and also the simple genetic algorithm proposed by the Goldberg(1989) is used. To evaluate a validity of the optimum design procedure proposed based on the genetic algorithm, comparisons regarding optimal pile placement for minimizing differential settlements by Kim et at.(1999) are made. In addition using proposed design procedure, design examples are presented.

  • PDF

유전알고리즘을 이용한 크레인 시스템의 최적제어 (An Optimal Control of the Crane System Using a Genetic Algorithm)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.498-504
    • /
    • 1998
  • This paper presents an optimal control algorithm for the overhead crane. To control the swing motion and the position tracking of the payload of the overhead crane a state feedback control algorithm is applied. by using a hybrid genetic algorithm the feedback gains of the state feedback is optimized to minimize the cost function composed of position errors and payload swing angle under unknown constant disturbances. Computer simulation is performed to demonstrate the effectiveness of the proposed control algorithm.

  • PDF

역복사 해석을 위한 혼합형 유전 알고리듬에 관한 연구 (A Study on a Hybrid Genetic Algorithm for the Analysis of Inverse Radiation)

  • 김기완;백승욱;김만영;유홍선
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1516-1523
    • /
    • 2003
  • An inverse radiation analysis is presented for the estimation of the boundary emissivities for an absorbing, emitting, and scattering media with diffusely emitting and reflecting opaque boundaries. The finite-volume method is employed to solve the radiative transfer equation for a two-dimensional irregular geometry. A hybrid genetic algorithm is proposed for improving the efficiency of the genetic algorithm and reducing the effects of genetic parameters on the performance of the genetic algorithm. After verifying the performance of the proposed hybrid genetic algorithm, it is applied to inverse radiation analysis in estimating the wall emissivities in a two-dimensional irregular medium when the measured temperatures are given at only four data positions. The effect of measurement errors on the estimation accuracy is examined.

유전자 알고리즘을 이용한 확장성 있고 빠른 경로 재탐색 알고리즘 (Fast and Scalable Path Re-routing Algorithm Using A Genetic Algorithm)

  • 이정규;김선호;양지훈
    • 정보처리학회논문지B
    • /
    • 제18B권3호
    • /
    • pp.157-164
    • /
    • 2011
  • 본 논문은 유전자 알고리즘을 이용해서 동적으로 변하는 네트워크상에서 빠르게 최단 경로를 재탐색할 수 있는 알고리즘을 제안한다. 제안 알고리즘은 다익스트라 알고리즘과 유전자 알고리즘을 통합한 형식의 알고리즘이다. 이 제안 알고리즘은 최초 탐색 시 다익스트라(Dijkstra) 알고리즘을 이용해서 유전자 알고리즘의 초기화 과정을 용이하게 하는 선행자 배열을 정의한다. 그 후 유전자 알고리즘은 적절한 유전 연산자를 통해 동적으로 변하는 트래픽 상황에서 최적의 경로를 재탐색한다. 실험 결과를 통해 제안 알고리즘이 거대한 네트워크 데이터에 대해서 다른 유전자 알고리즘 기반의 최단경로 찾기 알고리즘이나 다익스트라 알고리즘보다 적은 계산시간으로 더 짧은 주행시간의 경로를 제시한다는 것을 보였다.

전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별 (Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm)

  • 곽동훈;이춘태;정봉호;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.442-447
    • /
    • 2003
  • This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.

A Matrix-Based Genetic Algorithm for Structure Learning of Bayesian Networks

  • Ko, Song;Kim, Dae-Won;Kang, Bo-Yeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권3호
    • /
    • pp.135-142
    • /
    • 2011
  • Unlike using the sequence-based representation for a chromosome in previous genetic algorithms for Bayesian structure learning, we proposed a matrix representation-based genetic algorithm. Since a good chromosome representation helps us to develop efficient genetic operators that maintain a functional link between parents and their offspring, we represent a chromosome as a matrix that is a general and intuitive data structure for a directed acyclic graph(DAG), Bayesian network structure. This matrix-based genetic algorithm enables us to develop genetic operators more efficient for structuring Bayesian network: a probability matrix and a transpose-based mutation operator to inherit a structure with the correct edge direction and enhance the diversity of the offspring. To show the outstanding performance of the proposed method, we analyzed the performance between two well-known genetic algorithms and the proposed method using two Bayesian network scoring measures.

마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계 (Optimal Design of Composite Laminated Stiffened Structures Using micro Genetic Algorithm)

  • 이무근;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.268-271
    • /
    • 2005
  • Researches based on genetic algorithms have been performed in composite laminated structures optimization since 1990. However, conventional genetic algorithms have a disadvantage that its augmentation of calculation costs. A lot of variations have been proposed to improve the performance and efficiency, and micro genetic algorithm is one of them. In this paper, micro Genetic Algorithm was employed in the optimization of laminated stiffened composite structures to maximize the linear critical buckling load and the results from both conventional genetic algorithm and micro genetic algorithm were compared.

  • PDF

대체공정을 고려한 Job Shop 일정계획 수립을 위한 유전알고리즘 효율 분석 (Efficiency Analysis Genetic Algorithm for Job Shop Scheduling with Alternative Routing)

  • 김상천
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권5호
    • /
    • pp.813-820
    • /
    • 2005
  • 대체공정을 고려한 Job Shop 일정계획을 수립하기 위한 유전알고리즘을 개발하기 위하여 다음과 같이 유전알고리즘 효율분석을 실시하였다. 첫째, 대체공정을 고려한 job shop 일정계획을 수립하기 위한 유전 알고리즘을 제시하고 둘째, 전통적인 job shop 일정계획에 대한 벤치마크 문제에 대해 유전 알고리즘의 타당성을 확인하고 셋째, Park[3] 문제에 대해 유전알고리즘과 작업배정규칙을 적용한 결과를 비교하였다.

  • PDF

소프트웨어 제품라인의 출시 계획 수립을 위한 탐욕 유전자 알고리듬 (A Greedy Genetic Algorithm for Release Planning in Software Product Lines)

  • 유재욱
    • 산업경영시스템학회지
    • /
    • 제36권3호
    • /
    • pp.17-24
    • /
    • 2013
  • Release planning in a software product line (SPL) is to select and assign the features of the multiple software products in the SPL in sequence of releases along a specified planning horizon satisfying the numerous constraints regarding technical precedence, conflicting priorities for features, and available resources. A greedy genetic algorithm is designed to solve the problems of release planning in SPL which is formulated as a precedence-constrained multiple 0-1 knapsack problem. To be guaranteed to obtain feasible solutions after the crossover and mutation operation, a greedy-like heuristic is developed as a repair operator and reflected into the genetic algorithm. The performance of the proposed solution methodology in this research is tested using a fractional factorial experimental design as well as compared with the performance of a genetic algorithm developed for the software release planning. The comparison shows that the solution approach proposed in this research yields better result than the genetic algorithm.