• Title/Summary/Keyword: a fuzzy technique

Search Result 935, Processing Time 0.025 seconds

Development of Quality Information Control Technique using Fuzzy Theory (퍼지이론을 이용한 품질 정보 관리기법 개발에 관한 연구)

  • 김경환;하성도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.524-528
    • /
    • 1996
  • Quality information is known to have the characteristic of continuous distribution in many manufacturing processes. It is difficult to describe the process condition by classifying the distribution into discrete ranges which is based on the set concept. Fuzzy control chart has been developed for the control of linguistic data but it still utilizes the dichotomous notion of classical set theory. In this paper, the fuzzy sampling method is studied in order to manage the ambiguous data properly and incorporated for generating fuzzy control chart. The method is based on the fuzzy set concept and considered to be appropriate for the realization of a complete fuzzy control chart. The fuzzy control chart was compared with the conventional generalized p-chart in the sensitivity for quality distribution and robustiness against the noise. The fuzzy control chart with the fuzzy sampling method showed better characteristics.

  • PDF

The Classification of Tool Wear States Using Pattern Recognition Technique (패턴인식기법을 이용한 공구마멸상태의 분류)

  • Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1783-1793
    • /
    • 1993
  • Pattern recognition technique using fuzzy c-means algorithm and multilayer perceptron was applied to classify tool wear states in turning. The tool wear states were categorized into the three regions 'Initial', 'Normal', 'Severe' wear. The root mean square(RMS) value of acoustic emission(AE) and current signal was used for the classification of tool wear states. The simulation results showed that a fuzzy c-means algorithm was better than the conventional pattern recognition techniques for classifying ambiguous informations. And normalized RMS signal can provide good results for classifying tool wear. In addition, a fuzzy c-means algorithm(success rate for tool wear classification : 87%) is more efficient than the multilayer perceptron(success rate for tool wear classification : 70%).

Speed Control of Marine Gas Turbine Engines Using a RCGA and Fuzzy Technique (RCGA와 퍼지기법을 이용한 선박용 가스터빈 엔진의 속도제어)

  • So, Myung-Ok;Lee, Yun-Hyung;Jin, Gang-Gyoo;Jung, Byung-Gun;Kang, In-Chul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.274-280
    • /
    • 2005
  • The system parameters of gas turbine engine tend to change remarkably in real operating condition. It means that operators have to consider environment and suitably control fuel flow. The conventional PID controller, however, can not guarantee good control performance in the aspect of system parameter change. This paper, therefore, proposes a scheme for integrating PID control and fuzzy technique to obtain the good performance of gas turbine engine speed control on the whole operating range. The effectiveness of the proposed fuzzy PID controller is verified through computer simulation.

  • PDF

Relationship Among h Value, Membership Function, and Spread in Fuzzy Linear Regression using Shape-preserving Operations

  • Hong, Dug-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.306-311
    • /
    • 2008
  • Fuzzy regression, a nonparametric method, can be quite useful in estimating the relationships among variables where the available data are very limited and imprecise. It can also serve as a sound methodology that can be applied to a variety of management and engineering problems where variables are interacting in an uncertain, qualitative, and fuzzy way. A close examination of the fuzzy regression algorithm reveals that the resulting possibility distribution of fuzzy parameters, which makes this technique attractive in a fuzzy environment, is dependent upon an h parameter value. The h value, which is between 0 and 1, is referred to as the degree of fit of the estimated fuzzy linear model to the given data, and is subjectively selected by a decision maker (DM) as an input to the model. The selection of a proper value of h is important in fuzzy regression, because it determines the range of the posibility ditributions of the fuzzy parameters. In this paper, we discuss the interdependent relationship among the h value, membership function shape, and the spreads of fuzzy parameters in fuzzy linear regression with fuzzy input-output using shape-preserving operations.

Fuzzy Control Algorithm Eliminating Steady-state Position Errors of Robotic Manipulators (로봇 머니퓰레이터의 정상상태 위치오차를 제거할 수 있는 퍼지제어 알고리듬)

  • Kang, Chul-Goo;Kwak, Hee-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.361-368
    • /
    • 1997
  • In order to eliminate position errors existing at the steady state in the motion control of robotic manipulators, a new fuzzy control algorithm is propeosed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller. Although the number of input variables of the fuzzy controller is increased from two to three, the number of fuzzy control rules is just increased by two. Three dimensional look-up table is used to reduce the computational time in real-time control, and a technique reducing the amount of necessary memory is introduced. Simulation and experimental studies show that the position errors at the steady state are decreased more than 90% compared to those of existing fuzzy controller when the proposed fuzzy controller is applied to the 2 axis direct drive SCARA robot manipulator.

A Fuzzy TOPSIS Approach Based on Trapezoidal Numbers to Material Selection Problem

  • Celik, Erkan;Gul, Muhammet;Gumus, Alev Taskin;Guneri, Ali Fuat
    • Journal of Information Technology Applications and Management
    • /
    • v.19 no.3
    • /
    • pp.19-30
    • /
    • 2012
  • Material selection is a complex problem in the design and development of products for diverse engineering applications. This paper is aimed to present a fuzzy decision making approach to deal with the material selection in engineering design problems. A fuzzy multi criteria decision-making model is proposed for solving the material selection problem. The proposed model makes use of fuzzy TOPSIS (Technique for Order reference by Similarity to Ideal Solution) with trapezoidal numbers for evaluating the criteria and ranking the alternatives. And result is compared with fuzzy VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje in Serbian, means Multi criteria Optimisation and Compromise Solution) which is proposed by Jeya Girubha and Vinodh [2012]. The present paper is aimed to also improve literature of fuzzy decision making for material selection problem.

Robust Camera Calibration using TSK Fuzzy Modeling

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • Camera calibration in machine vision is the process of determining the intrinsic camera parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

Automatic Document Summary Technique Using Fuzzy Theory (퍼지이론을 이용한 자동문서 요약 기술)

  • Lee, Sanghoon;Moon, Seung-Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.531-536
    • /
    • 2014
  • With the very large quantity of information available on the Internet, techniques for dealing with the abundance of documents have become increasingly necessary but the problem of processing information in the documents is still technically challenging and remains under study. Automatic document summary techniques have been considered as one of critical solutions for processing documents to retain the important points and to remove duplicated contents of the original documents. In this paper, we propose a document summarization technique that uses a fuzzy theory. Proposed summary technique solves the ambiguous problem of various features determining the importance of the sentence and the experiment result shows that the technique generates better results than other previous techniques.

Digital Fuzzy Control of Nonlinear Systems Using Intelligent Digital Redesign

  • Lee, Ho-jae;Kim, Hag-bae;Park, Jin-bae;Cha, Dae-bum;Joo, Young-hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.621-627
    • /
    • 2001
  • In this paper, a novel and efficient global intelligent digital redesign technique for a Takagi-Sugeno (TS) fuzzy system is addressed. The proposed method should be notably discriminated from the previous works in that in allows us to globally match the states of the closed-loop TS fuzzy system with the pre-designed continuous-time fuzzy-model-based controller and those with the digitally redesigned fuzzy-model-based controller, and further to guarantee the stabilizability by the redesigned controller in the sense of Lyapunov. Sufficient conditions for the global state-matching and the stability of the digitally controller system are formulated in terns of linear matrix inequalities (LMIs). The Duffing-like chaotic oscillator is simulated and demonstrated, to validate the effectiveness of the proposed digital redesign technique, which implies the safe applicability to the digital control system.

  • PDF

The Balancing of Disassembly Line of Automobile Engine Using Genetic Algorithm (GA) in Fuzzy Environment

  • Seidi, Masoud;Saghari, Saeed
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.364-373
    • /
    • 2016
  • Disassembly is one of the important activities in treating with the product at the End of Life time (EOL). Disassembly is defined as a systematic technique in dividing the products into its constituent elements, segments, sub-assemblies, and other groups. We concern with a Fuzzy Disassembly Line Balancing Problem (FDLBP) with multiple objectives in this article that it needs to allocation of disassembly tasks to the ordered group of disassembly Work Stations. Tasks-processing times are fuzzy numbers with triangular membership functions. Four objectives are acquired that include: (1) Minimization of number of disassembly work stations; (2) Minimization of sum of idle time periods from all work stations by ensuring from similar idle time at any work-station; (3) Maximization of preference in removal the hazardous parts at the shortest possible time; and (4) Maximization of preference in removal the high-demand parts before low-demand parts. This suggested model was initially solved by GAMS software and then using Genetic Algorithm (GA) in MATLAB software. This model has been utilized to balance automotive engine disassembly line in fuzzy environment. The fuzzy results derived from two software programs have been compared by ranking technique using mean and fuzzy dispersion with each other. The result of this comparison shows that genetic algorithm and solving it by MATLAB may be assumed as an efficient solution and effective algorithm to solve FDLBP in terms of quality of solution and determination of optimal sequence.