• Title/Summary/Keyword: a finite difference approximation

Search Result 126, Processing Time 0.022 seconds

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF

A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion (I) - Static Problem - (강체모드분리와 급수전개를 통한 준해석적 민감도 계산 방법의 개선에 관한 연구(I) - 정적 문제 -)

  • Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.585-592
    • /
    • 2003
  • Among various sensitivity evaluation techniques, semi-analytical method(SAM) is quite popular since this method is more advantageous than analytical method(AM) and global finite difference method(FDM). However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified fur individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, an iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes and the error of SAM caused by numerical difference scheme is alleviated by using a Von Neumann series approximation considering the higher order terms for the sensitivity derivatives.

Time Domain Acoustic Propagation Analysis Using 2-D Pseudo-spectral Modeling for Ocean Environment (해양환경에서 2차원 유사 스펙트럴 모델링을 이용한 시간 영역 음 전달 해석)

  • Kim Keesan;Lee Keunhwa;Seong Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.576-582
    • /
    • 2004
  • A computer code that is based on the Pseudo-spectral finite difference algorithm using staggered grid is developed for the wave propagation modeling in the time domain. The advantage of a finite difference approximation is that any geometrically complicated media can be modeled. Staggered grids are advantageous as it provides much more accuracy than using a regular grid. Pseudo-spectral methods are those that evaluate spatial derivatives by multiplying a wavenumber by the Fourier transform of a pressure wave-field and performing the inverse Fourier transform. This method is very stable and reduces memory and the number of computations. The synthetic results by this algorithm agree with the analytic solution in the infinite and half space. The time domain modeling was implemented in various models. such as half-space. Pekeris waveguide, and range dependent environment. The snapshots showing the total wave-field reveals the Propagation characteristic or the acoustic waves through the complex ocean environment.

EVALUATION OF NUMERICAL APPROXIMATIONS OF CONVECTION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD (비정렬 셀 중심 방법에서 대류플럭스의 수치근사벙법 평가)

  • Myong H.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.36-42
    • /
    • 2006
  • The existing numerical approximations of convection flux, especially the spatial higher-order difference schemes, in unstructured cell-centered finite volume methods are examined in detail with each other and evaluated with respect to the accuracy through their application to a 2-D benchmark problem. Six higher-order schemes are examined, which include two second-order upwind schemes, two central difference schemes and two hybrid schemes. It is found that the 2nd-order upwind scheme by Mathur and Murthy(1997) and the central difference scheme by Demirdzic and Muzaferija(1995) have more accurate prediction performance than the other higher-order schemes used in unstructured cell-centered finite volume methods.

A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations

  • Han, Young-Tak;Shin, Jung-Uk;Kim, Duk-Jun;Park, Sang-Ho;Park, Yoon-Jung;Sung, Hee-Kyung
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.535-537
    • /
    • 2003
  • We propose a rigorous 2D approximation technique for the 3D waveguide structures; it can minimize the well-known approximation errors of the commonly used effective index method. The main concept of the proposed technique is to compensate for the effective cladding index in the equivalent slab model of the original channel waveguide from the modal effective index calculated by the nonuniform 2D finite difference method. With simulations, we used the proposed technique to calculate the coupling characteristics of a directional coupler by the 2D beam propagation method, and the results were almost exactly the same as the results calculated by the 3D beam propagation method.

  • PDF

Elliptic Numerical Wave Model Using Generalized Conjugate Gradient Method (GCGM을 이용한 타원형 수치 파랑모형)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.93-99
    • /
    • 1998
  • Parabolic approximation and sponge layer are applied as open boundary condition for elliptic finite difference wave model. Generalized conjugate gradient method is used as a solution procedure. Using parabolic approximation a large part of spurious reflection is removed at the spherical shoal experiment and sponge layer boundary condition needs more than 2 wave lengths of sponge layer to give similar results. Simulating the propagation of waves on a rectangular harbor, it is identified that iterative scheme can be applied easily for the non-rectangular computational region.

  • PDF

A Comparative Study on Interrelation between FDTD Source Models for Coaxial-Probe Feeding Structures (동축 프로브 급전구조에 대한 FDTD 전원 모델들의 상호 관계에 관한 비교 연구)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.114-122
    • /
    • 2014
  • For an efficient finite-difference time-domain(FDTD) analysis of coaxial-probe feeding structures in radio frequency(RF) and microwave bands, an interrelation between equivalent source modeling techniques is investigated. In existing literature, equivalent source models with delta-gap or magnetic-frill concepts have been developed by many researchers. It is well known that FDTD implementation and computational accuracy of these source models are slightly different. In this paper, the interrelation between FDTD equivalent source models for coaxial feeding structures under the quasi-static approximation(QSA) is presented. As a function of FDTD equivalent source models, time-domain and frequency-domain responses of a coaxial-probe fed conical monopole antenna are calculated numerically. And comparison results of computational accuracy and efficiency are provided.

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

A Gridless Finite Difference Method for Elastic Crack Analysis (탄성균열해석을 위한 그리드 없는 유한차분법)

  • Yoon, Young-Cheol;Kim, Dong-Jo;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.321-327
    • /
    • 2007
  • This study presents a new gridless finite difference method for solving elastic crack problems. The method constructs the Taylor expansion based on the MLS(Moving Least Squares) method and effectively calculates the approximation and its derivatives without differentiation process. Since no connectivity between nodes is required, the modeling of discontinuity embedded in the domain is very convenient and discontinuity effect due to crack is naturally implemented in the construction of difference equations. Direct discretization of the governing partial differential equations makes solution process faster than other numerical schemes using numerical integration. Numerical results for mode I and II crack problems demonstrates that the proposed method accurately and efficiently evaluates the stress intensity factors.