Elliptic Numerical Wave Model Using Generalized Conjugate Gradient Method

GCGM을 이용한 타원형 수치 파랑모형

  • 윤종태 (경성대학교 건설·환경공학부)
  • Published : 1998.06.01

Abstract

Parabolic approximation and sponge layer are applied as open boundary condition for elliptic finite difference wave model. Generalized conjugate gradient method is used as a solution procedure. Using parabolic approximation a large part of spurious reflection is removed at the spherical shoal experiment and sponge layer boundary condition needs more than 2 wave lengths of sponge layer to give similar results. Simulating the propagation of waves on a rectangular harbor, it is identified that iterative scheme can be applied easily for the non-rectangular computational region.

타원형 유한차분모형에서 개방 경계조건으로 포물선 근사식과 스폰지층 경계를 사용하여 모형의 개량을 도모하였다. 수치기법은 GCG(Generalized conjugate gradient)기법을 사용하였고 구형해저실험에서 포물형 근사식을 사용하여 부적절한 반사파를 상당 부분 제거할 수 있었다. 스폰지층 경계의 경우 2파장 이상의 스폰지층을 사용할 때 포물형 근사식과 유사한 결과를 얻을 수있었다. 직사각형 항만에 대한 실험을 통하여 임의 형상의 대상 해역에도 쉽게 모형을 적용할 수 있음을 확인하였다.

Keywords

References

  1. 한국해안 · 해양공학회지 v.6 no.2 완경사 파랑식에 대한 PCGM 연산방식 비교 서승남
  2. 한국해안 · 해양공학회지 v.6 no.3 타원형천퇴에 대한 PCGM과 포물형근사식 수치모형비교 서승남;연영진
  3. 한국해안 · 해양공학회지 v.5 no.2 CGM을 이용한 완경사방정식의 수치해석 윤종태
  4. 대한토목학회논문집 v.17 no.II-2 수심변화가 심한 경우에 적용가능한 Copeland형 파랑식 이창훈;박우선
  5. J. Comput. Phys. v.49 An iterative method for the Helmholtz equation Bayliss, Q.;Goldstein, C.I.;Turkel, E.
  6. Proc. 13th Coastal Engrg. Conf. Computation of combined refraction and diffraction Berkhoff, J.C.W.
  7. Coastal Engrg. v.6 Verification of numerical wave prooagation models for simple harmonic linear water waves Berkhoff, J.C.W.;Booy, N.;Radder, A.C.
  8. Proc. Roy. Soc. Lond. v.A437 Perfect boundary condition for parabolic water-wave models Darlymple, R.A.;Martin, P.A.
  9. J. Waterway, Port, Coastal and Ocean Engrg. v.110 no.2 Water waves and circular damping regions Darlymple, R.A.;Hwang, P.A.;Liu, P.L.F.
  10. Applied Ocean Res. v.3 Combined refaction and diffraction of short waves using the finite element method Houston, J.R.
  11. Proc. 13th Coastal Engrg. Conf. A method of numeri cal analysis of wave propagation-application to wave diffraction and refraction Ito, Y.;Tanmoto, K.
  12. Coastal Engrg. v.13 A note on parabolic radiation boundary confition for elliptic wave calculations Kirby, J.T.
  13. Coastal Engrg. v.7 Open boundaries in short wave simulations - a new approach Larsen, J.;Dancy, H.
  14. J. Fluid Mech. v.45 Wave-induced oscillations on harbors of arbitrayr geometry Lee, J.J.
  15. Coastal Engrg. v.23 A generalized conjugate gradient model for the mild slope equation Li, B.
  16. Coastal Engrg. v.16 Efficient elliptic solvers for the mild-slope equation using multi-grid method Li, B.;Anastasiou, K.
  17. J. Waterway, port, Coastal and Ocean Engrg. v.112 no.6 Wave reflection from energy dissipation region Liu,P.L.-F.;Yoon, S.B.;Darlymple, R.A.
  18. The applied dynamics of ocean surface waves Mei, C.C.
  19. Coastal Engrg. v.12 Combined refraction-diffraction of short-waves for large domains Panchang, V.G.;Cushman-Roison, B.;Prarce, B.R.
  20. Applied Ocean Res. v.13 no.4 Solution of the mild-slope wave problem by interation Panchang, V.G.;Pearce, B.R.;Wei, G.;Cushman-Roison, B.
  21. J. Fluid Mech. v.95 On the parabolic equation method for water-wave propagation Radder, A.C.
  22. Applied Ocean Res. v.5 no.1 A finite element model for wave refraction and diffraction Tsay, T.-K.;Liu, P.L.-F.
  23. Applied Ocean Res. v.11 A finite element model for wave refraction, diffraction, reflection and dissipation Tsay, T.-K.;Euh, W.;Liu, P.L-F.