• 제목/요약/키워드: a feature extraction

검색결과 2,185건 처리시간 0.03초

Vulnerability Assessment of a Large Sized Power System Using Neural Network Considering Various Feature Extraction Methods

  • Haidar, Ahmed M. A;Mohamed, Azah;Hussian, Aini
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.167-176
    • /
    • 2008
  • Vulnerability assessment of power systems is important so as to determine their ability to continue to provide service in case of any unforeseen catastrophic contingency such as power system component failures, communication system failures, human operator error, and natural calamity. An approach towards the development of on-line power system vulnerability assessment is by means of using an artificial neural network(ANN), which is being used successfully in many areas of power systems because of its ability to handle the fusion of multiple sources of data and information. An important consideration when applying ANN in power system vulnerability assessment is the proper selection and dimension reduction of training features. This paper aims to investigate the effect of using various feature extraction methods on the performance of ANN as well as to evaluate and compare the efficiency of the proposed feature extraction method named as neural network weight extraction. For assessing vulnerability of power systems, a vulnerability index based on power system loss is used and considered as the ANN output. To illustrate the effectiveness of ANN considering various feature extraction methods for vulnerability assessment on a large sized power system, it is verified on the IEEE 300-bus test system.

고속 문자 인식을 위한 특정 추출용 칩의 구현 (Implementation of a Feature Extraction Chip for High Speed OCR)

  • 김형구;강선미;김덕진
    • 전자공학회논문지B
    • /
    • 제31B권6호
    • /
    • pp.104-110
    • /
    • 1994
  • We proposed a high speed feature extraction algorithm and developed a feature vector extraction chip for high speed character recognition. It is hard to implement a high speed OCR by software alone with statistical method . Thus, the whole recognition process is divided into functional steps, then pipeline processed so that high speed processing is possible with temporal parallelism of the steps. In this paper we discuss the feature extraction step of the functional steps. To extract feature vector, a character image is normalized to 40$\times$40 pixels. Then, it is divided into 5$\times$5 subregions and 4x4 subregions to construct 41 overlapped subregions(10x10 pixels). It requires to execute more than 500 commands to extract a feature vector of a subregion by software. The proposed algorithm, however, requires only 10 cycles since it can extract a feature vector of a columm of subregion in one cycle with array structure. Thus, it is possible to process 12.000 characters per second with the proposed algorithm. The chip is implemented using EPLD and the effectiveness is proved by developing an OCR using it.

  • PDF

선형적 특징추출 방법의 특성 비교 (Comparisons of Linear Feature Extraction Methods)

  • 오상훈
    • 한국콘텐츠학회논문지
    • /
    • 제9권4호
    • /
    • pp.121-130
    • /
    • 2009
  • 이 논문은 고차원의 데이터를 저 차원으로 줄이는 방법 중 하나인 특징추출에 대한 방법들의 특성을 비교한다. 비교대상 방법은 전통적인 PCA(Principal Component Analysis)방법과 시각피질의 특성을 보인다고 알려진 ICA(Independent Component Analysis), 국소기반인식을 구현한 NMF(Non-negative Matrix Factorization), 그리고 이의 성능을 개선한 sNMF(Sparse NMF)로 정하였다. 추출된 특징들의 특성을 시각적으로 확인하기 위하여 필기체 숫자 영상을 대상으로 특징추출을 수행하였으며, 인식기에 적용한 효과의 확인을 위하여 추출된 특징을 다층퍼셉트론에 학습시켜보았다. 각 방법의 특성을 비교한 결과는 응용하고자 하는 문제에서 어떤 특징을 추출하기 원하느냐에 따라 특징추출 방법을 선정할 때 유용할 것이다.

근전도 신호기반 손목 움직임의 추정을 위한 다중 특징점 추출 기법 알고리즘 (Improvements of Multi-features Extraction for EMG for Estimating Wrist Movements)

  • 김서준;정의철;이상민;송영록
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.757-762
    • /
    • 2012
  • In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.

Feature Extraction Method for the Character Recognition of the Low Resolution Document

  • Kim, Dae-Hak;Cheong, Hyoung-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.525-533
    • /
    • 2003
  • In this paper we introduce some existing preprocessing algorithm for character recognition and consider feature extraction method for the recognition of low resolution document. Image recognition of low resolution document including fax images can be frequently misclassified due to the blurring effect, slope effect, noise and so on. In order to overcome these difficulties in the character recognition we considered a mesh feature extraction and contour direction code feature. System for automatic character recognition were suggested.

  • PDF

Efficient Content-Based Image Retrieval Methods Using Color and Texture

  • Lee, Sang-Mi;Bae, Hee-Jung;Jung, Sung-Hwan
    • ETRI Journal
    • /
    • 제20권3호
    • /
    • pp.272-283
    • /
    • 1998
  • In this paper, we propose efficient content-based image retrieval methods using the automatic extraction of the low-level visual features as image content. Two new feature extraction methods are presented. The first one os an advanced color feature extraction derived from the modification of Stricker's method. The second one is a texture feature extraction using some DCT coefficients which represent some dominant directions and gray level variations of the image. In the experiment with an image database of 200 natural images, the proposed methods show higher performance than other methods. They can be combined into an efficient hierarchical retrieval method.

  • PDF

위치이동에 무관한 웨이블릿 변환을 이용한 패턴인식 (Patterns Recognition Using Translation-Invariant Wavelet Transform)

  • 김국진;조성원;김재민;임철수
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.281-286
    • /
    • 2003
  • 웨이블릿 변환(Wavelet Transform)은 공간-주파수 영역에서 신호의 국소특성을 효율적으로 구현할 수 있다 하지만, 웨이블릿 변환을 패턴 인식을 위한 특징 추출에 적용할 경우, 입력 신호의 위치 이동에 따라 추출된 특징 값이 변화하게 되어 인식률이 낮아지는 결함이 있다. 본 논문에서는 웨이블릿 변환을 패턴 인식에 적용할 경우 발생하는 입력 신호의 위치 이동에 따른 문제점을 보완하여 노이즈에 강인한 홍채인식 알고리즘을 제안한다. 실험을 통하여 제안한 알고리즘의 우수성을 보여 준다.

FPGA-Based Hardware Accelerator for Feature Extraction in Automatic Speech Recognition

  • Choo, Chang;Chang, Young-Uk;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • 제13권3호
    • /
    • pp.145-151
    • /
    • 2015
  • We describe in this paper a hardware-based improvement scheme of a real-time automatic speech recognition (ASR) system with respect to speed by designing a parallel feature extraction algorithm on a Field-Programmable Gate Array (FPGA). A computationally intensive block in the algorithm is identified implemented in hardware logic on the FPGA. One such block is mel-frequency cepstrum coefficient (MFCC) algorithm used for feature extraction process. We demonstrate that the FPGA platform may perform efficient feature extraction computation in the speech recognition system as compared to the generalpurpose CPU including the ARM processor. The Xilinx Zynq-7000 System on Chip (SoC) platform is used for the MFCC implementation. From this implementation described in this paper, we confirmed that the FPGA platform is approximately 500× faster than a sequential CPU implementation and 60× faster than a sequential ARM implementation. We thus verified that a parallelized and optimized MFCC architecture on the FPGA platform may significantly improve the execution time of an ASR system, compared to the CPU and ARM platforms.

CASA 시스템의 비모수적 상관 특징 추출을 이용한 목적 음성 분리 (Target Speech Segregation Using Non-parametric Correlation Feature Extraction in CASA System)

  • 최태웅;김순협
    • 한국음향학회지
    • /
    • 제32권1호
    • /
    • pp.79-85
    • /
    • 2013
  • CASA 시스템의 특징 추출은 시간의 연속성과 채널 간 유사성을 이용하여 청각 요소의 상관지도를 구성하여 사용한다. 채널 간 유사성을 교차 상관 계수를 이용하여 특징 추출 할 경우 상관성을 정량적으로 나타내기 위해 계산량이 많은 단점이 있다. 따라서 본 논문에서는 특징 추출 시 계산 량을 줄이기 위한 방법으로 비모수적 상관 계수를 이용한 특징 추출 방법을 제안하고 이를 CASA 시스템을 통하여 목적 음성을 분리하는 실험을 수행하였다. 목적 음성의 분리 성능을 평가하기 위하여 신호 대 잡음비를 측정한 결과, 제안 방식이 기존 방식에 비해 평균 0.14 dB의 미세한 성능 개선을 보였다.

Stacked Autoencoder를 이용한 특징 추출 기반 Fuzzy k-Nearest Neighbors 패턴 분류기 설계 (Design of Fuzzy k-Nearest Neighbors Classifiers based on Feature Extraction by using Stacked Autoencoder)

  • 노석범;오성권
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.113-120
    • /
    • 2015
  • In this paper, we propose a feature extraction method using the stacked autoencoders which consist of restricted Boltzmann machines. The stacked autoencoders is a sort of deep networks. Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as stochastic neural networks. In terms of pattern classification problem, the feature extraction is a key issue. We use the stacked autoencoders networks to extract new features which have a good influence on the improvement of the classification performance. After feature extraction, fuzzy k-nearest neighbors algorithm is used for a classifier which classifies the new extracted data set. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.