• 제목/요약/키워드: a evolution strategies

검색결과 232건 처리시간 0.023초

Performance Improvement of Evolution Strategies using Reinforcement Learning

  • Sim, Kwee-Bo;Chun, Ho-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.125-130
    • /
    • 2001
  • In this paper, we propose a new type of evolution strategies combined with reinforcement learning. We use the variances of fitness occurred by mutation to make the reinforcement signals which estimate and control the step length of mutation. With this proposed method, the convergence rate is improved. Also, we use cauchy distributed mutation to increase global convergence faculty. Cauchy distributed mutation is more likely to escape from a local minimum or move away from a plateau. After an outline of the history of evolution strategies, it is explained how evolution strategies can be combined with the reinforcement learning, named reinforcement evolution strategies. The performance of proposed method will be estimated by comparison with conventional evolution strategies on several test problems.

  • PDF

진화전략과 DEA를 이용한 통합 물류 시스템 분석 방법 (The Analysis Method of Integrated Logistic System using Evolution Strategies and Data Envelopment Analysis)

  • 엄인섭;이홍철;강정윤
    • 한국시뮬레이션학회논문지
    • /
    • 제13권4호
    • /
    • pp.17-29
    • /
    • 2004
  • The focus of this study is to represent a methodology of analysis for integrated logistic system by means of the Evolution Strategies and Data Envelopment Analysis(DEA). The integrated logistic system is composed of AS/RS (Automated Storages and Retrieval System), AGVs(Automated Guided Vehicle System) and Conveyor System. We design the simulation alternatives with choosing the qualitative critical factors for the each subsystem. Evolution Strategies is used to optimize the quantitative critical factors and responses of each alternative. DEA is applied to measure the efficiency of the alternatives in order to select the optimal operation efficiency scheme. The method of analysis which combines Evolution Strategies with DEA can be used to analyze the qualitative and quantitative critical factors in the integrated logistic systems.

  • PDF

진화 스트레티지를 이용한 CMAC 망 최적 설계 (Optimal Design of CMAC network Using Evolution Strategies)

  • 이선우;김상권;김종환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.271-274
    • /
    • 1997
  • This paper presents the optimization technique for design of a CMAC network by using an evolution strategies(ES). The proposed technique is designed to find the optimal parameters of a CMAC network, which can minimize the learning error between the desired output and the CMAC network's as well as the number of memory used in the CMAC network. Computer simulations demonstrate the effectiveness of the proposed design method.

  • PDF

Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제34권5호
    • /
    • pp.597-609
    • /
    • 2010
  • A problem formulation and solution methodology for design optimization of laminated thin-walled composite beams of generic section is presented. Objective functions and constraint equations are given in the form of beam stiffness. For two different problems one for open section and the other for closed section, the objective function considered is bending stiffness about x-axis. Depending upon the case, one can consider bending, torsional and axial stiffnesses. The different search and optimization algorithm, known as Evolution Strategies (ES) has been applied to find the optimal fibre orientation of composite laminates. A multi-level optimization approach is also implemented by narrowing down the size of search space for individual design variables in each successive level of optimization process. The numerical results presented demonstrate the computational advantage of the proposed method "Evolution strategies" which become pronounced to solve optimization of thin-walled composite beams of generic section.

부분 구조 모드 합성법 및 유전 전략 최적화 기법을 이용한 비부합 절점을 가진 구조물의 구조변경 (Structural Dynamics Modification of Structures Having Non-Conforming Nodes Using Component Mode Synthesis and Evolution Strategies Optimization Technique)

  • 이준호;정의일;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.651-659
    • /
    • 2002
  • Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degree-of-freedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be non-conforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the non-conforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

  • PDF

Discrete approaches in evolution strategies based optimum design of steel frames

  • Hasancebi, O.
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.191-210
    • /
    • 2007
  • The three different approaches (reformulations) of evolution strategies (ESs) have been proposed in the literature as extensions of the technique for solving discrete problems. This study implements an extensive research on application, evaluation and comparison of them in discrete optimum design of steel frames. A unified formulation is first developed to explain these approaches, so that differences and similarities between their inherent search mechanisms can clearly be identified. Two examples from practical design of steel frames are studied next to measure their performances in locating the optimum. Extensive numerical experimentations are performed in both examples to facilitate a statistical analysis of their convergence characteristics. The results obtained are presented in the histograms demonstrating the distribution of the best designs located by each approach. In addition, an average improvement of the best design during the course of evolution is plotted in each case to compare their relative convergence rates.

학습에의한 진화전략의 수렴성에 관한연구 (A Study on the Convergence of the Evolution Strategies based on Learning)

  • 심귀보
    • 한국지능시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.650-656
    • /
    • 1999
  • 본논문에서는 라마르크 진화와 볼드윈 효과를 진화전략에 적용하여 진화전략의 수렴성에 대해서 고찰한다. 또한 진화전략의 탐색법으로 랜덤 지역탐색법과 강화 지역 탐색법을 제안한다. 랜덤지역탐색은 미리 정한 일정한 회수의 지역탐색을 랜덤하게 수행하는 것이고 강화 지역탐색은 주어진 범위내에 존재하는 모든개체의 적합도를 평가하여 가장 적합도가 높은 개체 주변을 탐색하는 것이다. 이러한 관점에서 라마르크 진화와 볼드윈 효과를 기본으로 하는 강화 지역탐색은 단순히 랜덤하게 주변개체의 적합도를 탐색하는 것이 아니라 해 공간상에서 적합도가 높아지는 방향으로 지역 탐색을 행함으로써 랜덤 지역탐색에 비해 보다 효과적으로 주변 개체를 탐색할 수 있어 전역적 탐색능력의 향상은 물론 수렴속도의 향상은 가져 올수 있었다. 결과적으로 진화과정에 학습을 도입함으로써 진화만으로 최적해를 탐색할때보다 그성능이 향상됨을 볼 수 있다, 제안한 방법은 다양한 함수최적화 문제에 적용하여 그 시뮬레이션을 통해 학습이 진화에 미치는 영향에 대해서 고찰한다.

  • PDF

New Boundary-Handling Techniques for Evolution Strategies

  • Park, Han-Lim;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.165.1-165
    • /
    • 2001
  • The evolution strategy is a good evolutionary algorithm to find the global optimum of a real-valued function. Since many engineering problems can be formulated as real valued function optimization, the evolution strategy is frequently employed in engineering fields. However, in many engineering optimization problems, an optimization parameter is often restricted in the bounded region between two specified values, the minimum and the maximum limit, respectively. Since an offspring individual is generated randomly around a parent individual during mutation process of the evolution strategy, an individual outside the search region can be generated even if the parent is inside the search region. This paper proposes two new boundary-handling techniques for evolution strategies. One is the ...

  • PDF

동적 귀환 신경망에 의한 비선형 시스템의 동정 (Identification of Nonlinear Systems based on Dynamic Recurrent Neural Networks)

  • 이상환;김대준;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.413-416
    • /
    • 1997
  • Recently, dynamic recurrent neural networks(DRNN) for identification of nonlinear dynamic systems have been researched extensively. In general, dynamic backpropagation was used to adjust the weights of neural networks. But, this method requires many complex calculations and has the possibility of falling into a local minimum. So, we propose a new approach to identify nonlinear dynamic systems using DRNN. In order to adjust the weights of neurons, we use evolution strategies, which is a method used to solve an optimal problem having many local minimums. DRNN trained by evolution strategies with mutation as the main operator can act as a plant emulator. And the fitness function of evolution strategies is based on the difference of the plant's outputs and DRNN's outputs. Thus, this new approach at identifying nonlinear dynamic system, when applied to the simulation of a two-link robot manipulator, demonstrates the performance and efficiency of this proposed approach.

  • PDF

Differential Evolution with Multi-strategies based Soft Island Model

  • Tan, Xujie;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • 제17권4호
    • /
    • pp.261-266
    • /
    • 2019
  • Differential evolution (DE) is an uncomplicated and serviceable developmental algorithm. Nevertheless, its execution depends on strategies and regulating structures. The combination of several strategies between subpopulations helps to stabilize the probing on DE. In this paper, we propose a unique k-mean soft island model DE(KSDE) algorithm which maintains population diversity through soft island model (SIM). A combination of various approaches, called KSDE, intended for migrating the subpopulation information through SIM is developed in this study. First, the population is divided into k subpopulations using the k-means clustering algorithm. Second, the mutation pattern is singled randomly from a strategy pool. Third, the subpopulation information is migrated using SIM. The performance of KSDE was analyzed using 13 benchmark indices and compared with those of high-technology DE variants. The results demonstrate the efficiency and suitability of the KSDE system, and confirm that KSDE is a cost-effective algorithm compared with four other DE algorithms.