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Abstract

In this paper, we propose a new type of evolution stralegies combined with reinforcement leamning. We use the variances of fitness
occurred by mutation to make the reinforcement signals which estimate and control the step length of mutation. With this proposed
method, the convergence rate is improved. Also, we use cauchy distributed mutation to increase global convergence faculty. Cauchy
distributed mutation is more likely to escape from a local minimwn or move away from a plateau. After an outline of the history of
evolution strategies, it is explained how evolution strategies can be combined with the reinforcement learning, named reinforcement
evolution strategies. The performance of proposed method will be cstimated by comparison with conventional evolution stratemes on

several test problems.
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I . Introduction

Evolutionary ~ Algorithms(EAs){1,2] are the com-
putational models intending to solve complex problems.
EAs are based on the collective search process within a
population of individuals, each of which represents a
search point in the search space. The population is
arbitrarily initialized, evolves toward fitter point in the
search space by means of operation and selection as the
generation goes by. Individuals can generate a new
offspring in operation process, and fitter ones can be
selected to the next population in selection process. These
procedures are iterated until the termination ctiterion
fuifilled.

Four main fields of evolutionary algorithms are genetic
algorithms(GAs), evolution strategies(ESs), evolutionary
programming(EP), and genetic programming(GP). In
particular, ESs are suitable to solve function optimization
problems, beause search points in ESs are represented in
n-dimensional real vectors, First efforts toward ESs took
place in 1964 1o apply hydrodynamic problems in
Germany. In 1965, ESs were simulated by Schwefel.
Rechenberg developed a convergence theory for
(1+1)-ES, and proposed a 1/5-success rule which change
the standard deviation of mutations exogenously, in 1973,
After a first multimembered ES, (g +1)-ES, proposed by
him, the transition to (u+ A)-ES and (g, A)>ES were
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facilitated by Schwefel, in 1977 and in 1981,
respectively[1]. These ESs use the mutation operator as
the main operation and the recombination operator as sub
operation, One individual of ESs consists of an object
variable, a standard deviation, and a rotation angle. These
vectors are mutated self-adaptively according to the each
updating rule containing modified probability density
function. In the mutation process, standard deviations and
rotation angles determine the amount of mutation for the
objective variables. Although those two vectors, which
can be said as step length, are mutated self-adaptively,
there are still some problems remained. If these values
become too large by their muation, the objective
variables will be mmtated too much. Or if they become
too low values, the individuals can not make any
different offspring from himself. Therefore, in ESs, it is
very important to mutate properly for these two vectors,
and if we can control these vectors appropriately, the
performance of ESs will be improved as it can be
expected. But the mutation process of ESs goes on
stochastically. It means that an individual of ESs makes
its offspring randomly and there is not any directional
information in mutation process. Though this makes it
difficult to mutate step length appropriately, there have
been many efforts to improve the performance of ESs.
Schwefel and Rudolph proposed a (4 .k, A, p )-ES which
contains the concept of life span[3]. Yao and Liu
proposed fast ESs which mutate an individual according
to the cauchy distribution not to the gaussian distribution
for the purpose of improving global -convergence
faculty[4].

Now, we propose a new ESs which give some
directional information to the mutation process by
reinforcement learning mechanism. We named this
method as reinforcement evolution strategies. Rein-
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forcement learning[5,6] is a kind of unsupervised
learning, The goal of reinforcement leaming is that an
agent learns the action or the strategies maximizing the
reward through trial-and-error interactions with an
environment. We can easily match the reinforcement
learning to ESs. The reward given to an individual in
ESs can be defined as variance of fitness occurred by
mutation. It can be used as reinforcement signal to set
the step length appropriately according to reinforcement
learning. As a result of this, mutation of ESs can be
executed to make the variance of fitness larger. Although
using reinforcement learning have an effect of improving
convergence rate, it can not guarantec improvement of
global convergence faculty. For the purpose of acquisition
of this, we substitute cauchy distribution for gaussian
distribution. Because the mutation according to cauchy
distribution can search more widely, population can easily
escape from local minimum. Simulation tesults comparing
reinforcement evolution strategies with conventional
evolution strategies for several function optimization
problems reveal the performance and efficiency of the
proposed method.

This paper is organized as follows : Section 2 is a
description of conventional evolution strategies. Section 3
introduces reinforcement evolution strategies. Section 4
illustrates simulation results. Finally, conclusions are
included in Section 5.

1. Evolution Strategies

2.1 Conceptual Algorithms

Conventional evolution strategies can be divided into
(p+A)ES and (g, A)ES according to its selection
method. ESs recombine and mutate x4 parents to
generate A offsprings. Then, (x+ A)-ES select pu
individuals to form next population from g parents and
A offsprings, and (2, A1)-ES select p individuals from
only A offsprings. The conceptual algorithm of (g +
A)ES and (g, A)-ES is illustrated in Fig. 1[1,7].

Algorithm :
t =0
initialize = P(0) ={a(0), ..., 2,(0)}
where a,(0) = (x,(0), 6{0), @:(0)),
XI(O) R ", 0}'(0) ER n,
a{0)=[0,22)"* V2 Via(l, ..., Ak
evaluate = P(0);
while fermination criterion not fulfilled do
recombine : a, () =+AP(H) Viell, ..., L
mutate © a,” () =mla, (D)

evaluate : P8 ={a,"(O,...,a;" (D}
select © P(t+1) =s(P () if (g, A)— ES;
P(t+1) =s(P(DURAY) if (u+A)— ES;
{ =¢+1;
end

Fig. 1. Conceptual algorithm of evolution strategies

2.2 Mutation

A search point i search space can be represented as a
n-dimensional object variable ¥, and it include up to
-dimensional standard deviation 7 and rotation angle .
Each vectors are mutated as follows,

6, = o;-exp(r - MO, D+r-N{0,1))
@] = a,—-f—ﬂ-_)f\/]_g),}‘) {1
¥ = x+t2(0,0¢,a)

where the global factor - M(,1) has the same value
over all ;={1,...,n, whereas the individual factor
r- N{0,1) is newly generated and applied for every jth
elements. z(§ 5, 2) denotes a realization of a random
vector distributed according to the following generalized
n-dimensional gaussian distribution having expectation
0, standard deviations 7, and rotation angle 2.

. det A 1.7
e = )" exp( g 2 Az) 2)
where A~'= ¢, represents the covariance matrix. o is

used as » diagonal components of A7!, that is ¢,= o2,
and 7 acts as the other components of A~!. Schwefel
suggests to set each parameters in equation (1) as
follows.

roc (Vovn) ™!
7 o (Vo) ! 3)

8= 0.0873 (5° )

The resulting evolution and adaptation of strategy
parameters according to the topological requirements has
been termed self-adaptation by Schwefel,

2.3 Recombination and Selection

Recombination of ESs is similar to crossover of GAs.

In ESs there are some different recombination
mechanisms as follows.
Xg,i-
without recombination
Xgi O X, :

discrete recombination
x5, T u (27, —xS.z) :

intermediate vecombinalion @)
Xg., OF g, :

global, discrete recombination
X it (xq—%xg):

global, iniermediale recombination

where indices S and T denote two parent individuals
selected at random from population P(#). «, is uniformly
distributed random variables in the range of [0~1].
Discrete recombination is the method selecting randomly
one individual from two pre-selected parents and making
it as an offspring. Intermediate recombination let an
offspring have his object value as intermediate value of
two parents. Global recombination select newly two
parents for every /th element. Because variance of
object value iIn recombination is larger than that in
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mutation, recombination generally have an effect of
improving global convergence faculty,

Selection 1 ESs is completely deterministic, selecting
the . best individuals from 3 or p+A individuals.
Although the (u+A) selection is elitist and therefore
guarantees a monotonically improving performance, this
selection strategy is unable to deal changing environments
and jeopardizes the self-adaptation mechanism. Therefore,
the (4, A) selection is recommended today.

Il. Reinforcement Evolution Strategies

3.1 Reinforcement Learning and Evelution Strategies

With reinforcement learning, an agent in dynamic
environment can learn the optimal behavior or strategy
through trial-and-error interactions with an environment.
Reinforcement learning is based on the animals' leaming
skills and has the concept matching our common-sense
ideas, that is, if an action is followed by a satisfactory
state of affairs, or an improvement in the state of affairs,
then the tendency to produce that action is strengthened
or reinforced, otherwise, that tendency is weakened or
inhibited. Therefore, an agent learns to perform an
appropriate action by receiving evaluative feedback or
reward from environment. But, in many cases, the reward
is not given to the agent immediately. In that case, the
states in a sequence should be evaluated and adjusted
according to the final outcome. The problem of evaluale
each state individually in such a sequence called the
temporal credit assigmment problem. There are many
methods to deal with this problems such as temporal
difference leaming[5,6] and Q-learning[5,6].

Reinforcement learning can be matched well with ESs.
An agent in reinforcement learning corresponds with an
individual in ESs. Similarly, we can find the
correspondence between reinforcement learning and ESs
as shown in Table 1.

Table 1. Correspondence belween reinforcement learning(RL)
and evolution strategies(ES)

RL ES
Agenl Individual
Action Operation and Selection

Reward Variance of fitness in an individual

’_ Staie
I

object variables

At this point of view, individuals(agent) in ESs change
its object variables(state) by means of operation and
selection(action). Then the variance of fitness(reward)
occutred by operation is used to alter its step length.
From this conception, we can realize reinforcement
evolution strategies in  which individuals learns to
maximize the variance of its fitness as time goes by. A

detatled feature of reinforcement evolution strategies will
be expressed in next section.

3.2. Reinforcement Evolution Strategies

Reinforcement evolution strategies (RES) is a new ESs
using reinforcement learning(Fig. 2). In this paper, we
defined conventional evolution strategies (CES) as the
ESs having no recombination and rotation angles.

Mutation in RES is executed interactively with
environments not stochastically in CES. In RES, the
rewards calculated by the variance of fitness give the
directional information into the mutation process. This
can be realized by using similarity shown in section 3.2.

Although there are some correspondence between
reinforcement learning and evolution strategies, there are
some differences between them. First, in reinforcement
learning, there is only one agent learning strategy, but in
ESs there is a population consists of many individuals.
Also, when we consider variance of fitness as reward,
individuals who received mamy rewards may be more
easily alive in selection process and who received many
penalties may disappear. Therefore an experience
accurnulated according to trial-and-error will be included
only in the individuals received rewards. And the reward
in ESs is acquired immediately, because it can be easily
computed within one generation. This difference makes it
necessary that we should wmodify conventional
reinforcement learning to apply ESs. Following methods
will be used to accomplish that.

Temporal reward s(# which is given to an individual
at every generation is defined as follows

+0.5 if AAH > 0
AH={ 0.0 if 4AH=0 5
—-1.0 if 44D <0

where 4AH is the difference of the fimess of an
individual between before and after mutations,

AAD = AH—At—1) (6)

Now, we define » (9 as the summation of temporal
rewards for » generations.

Fand) = L S =) @

This value will be +0.5 if the fitness of mutated
individual is better, or -1.0 if it is worse than before for
all » generations. Unbalance between reward and penalty
reflects the present condition that most individuals consist
in population receive the reward rather than the penalty.

In RES, the reward of an individual is used to control
the step length of mutation. On the contrary CES evolves
and adapts the step length according to self-adaptation
mechanisms. There is a directional information for the
step length to optimize individual's reward in RES. As
the reward becomes larger, the step length becomes larger
too, and vice-versa. This can be represented as follows.
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0, =0; exp (7 om(D - 17 - MO, DD+ - NO, 1)) (&)

In CES, the standard deviation values become more
smaller as generation goes by. However generally they
are too small, and make even unfitted individuals not to
change any more. This is the reason for worse
convergence rate and global search faculty in CES. But
in RES as the reward becomes larger, the step length
becomes larger too. In most case, the composition of
population is the individuals who received more rewards.
If the step length becomes larger, then that individual
will be dismissed. It means that excessive increase of the
step length will be inhibited, therefore, appropriate step
length is maintained in RES.

Although this has an effect of improving convergence
rate, it can not guarantee improvement of global
convergence faculty, because these two purposes are
conflicting with each other. For the purpose of
acquisition of global convergence faculty, we substitute
cauchy distribution for gaussian distribution as follows.

x = x,+ 0,8, 9

where §; is cauchy distributed random variable having

scale parameter ¢=1. The one-dimensional cauchy
density function centered at the origin is defiped by :

] 1
E4x

(10

filx) = _17; —cox{ oo

Because cauchy distribution is more likely to generate
a random number far away from the origin, the
probability of escaping from local minimum becomes
larger. After all, RES has an effect to improve
convergence rtate and global convergence faculty by
reinforcement  leaming and  cauchy  distribution,
respectively. This effect is illustrated more deeply by the
following simulation results.

Environment L=

Reward e o .
(Vyriance of Fitngss) Fimess of Offsprings
‘ ?3\ e, Action )
' (R Ty R . e
; 3 " (Mutation) - ‘
: Agent II Agent .
.| (Parents) | (Offsprings) |- '

i .
kmm«mummmwwm ACth.)D e e
(Selection)

T Conventional BS

§
i

Fitness lof Parents
v
I

Fig. 2. Reinforcement Evolution Strategies.

IV. Simulation Results

4.1 Unimodal Function

We applied the following unimedal fimction having no
local minima to CES and RES.

Ax) = }:x?,

n=30, —100<x;<100, famwm=0

(11)

~

The results are shown in Fig. 3 and Fig. 4. They are
averaged results for ten trials. (1, A) selection is used
where 2 = 30 and A = 200. Injtial standard deviation
set to 3.0. The summation of temporal reward is
calculated for last 5 generations as the following equation

(12).

Tmmi(f) = % ’Zb?'(t— Z') (12)

As we can sce in Fig 3, convergence rate of RES is
betier than that of CES. RES uses both reinforcement
learning and cauchy distribution. Therefore what brings
this result should be analyzed. From Fig 4, by applying
only one of these two methods, we can say that using
reinforcement Jearning in RES improve the convergence
rate. Reinforcement learning has the offect of accelerating
current direction of mutation as it goes better. Therefore,
in the search space having no local minimum, mutation
having directional information to the fitter search point is
more effective than stochastical mutation in CES.

Bas| of RES
Bli ot of CES

0 100 200 300 400 A0 ED0 700
ganarzlan

Fig. 3. Best fitness of CES and RES.

—
e
a0 _N‘\\
10 © | — - L 1 - _HH-"‘
o 100 peinin} 300 400 500 600 700

fenetation

Fig. 4. Best fitness when only one method is used.

4.2 Multimodal Function

The following multimodal function having many local
minima is applied to RES and CES.

Axn) = g[x?—IOc:os(an,)—!—lO],
7n=30, —5.12¢x,{5.12, fpuy=0
The results are shown in Fig. 5 and Fig. 6.

(13)
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Experimental condition is the same with the previous
one. In Fig, 4, we can easily see that best fimess of RES
is better than that of CES. At the beginning, there is no
significant difference in the convergence rate for both
ESs. But in CES, once falling into local minima, it is no
more better than before contrary to RES. From Fig. 5 we
can say using cauchy distribution makes it better
searching global minimum. The variance of the cauchy
distribution is infinite, and it helps to escape from local
minimum. Therefore, in the search space having many
local minima, RES wusing cauchy distribution is more
effective than CES wsing gaussian distribution.

V. Conclusions

In this paper, the reinforcement evolution strategies are

introduced after reviewing conventional evolution
strategies and reinforcement learning. Reinforcement
evolution
0 SR
———  Best of RES
----- Beat of CES
10° ¢
100
%10" 4
10!
10t}
10° : - . L
o 500 1000 1200 2000 2500 3000

genaration

Fig. 4. Best fitness of CES and RES.

1

s - —
o 500 1000 1500 2000 2500 3000
geasatan

Fig. 5. Best fitness when only one method is used.

strategies give some directional information into the
mutation process by using the reward from environment,
that is the variance of fitness. The step length controled
by the reward maintains appropriately and this improves
convergence rate. In mutation of object variables, using
cauchy distribution makes it possible to find global
minimum which is difficult to be found in CES. The
effectiveness of the proposed RES is verified by being
applied to wmimodal and multimodal finctions.
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