• Title/Summary/Keyword: a decentralized

Search Result 878, Processing Time 0.03 seconds

A Decentralized Optimal Load Current Sharing Method for Power Line Loss Minimization in MT-HVDC Systems

  • Liu, Yiqi;Song, Wenlong;Li, Ningning;Bai, Linquan;Ji, Yanchao
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2315-2326
    • /
    • 2016
  • This paper discusses the elimination of DC voltage deviation and the enhancement of load current sharing accuracy in multi-terminal high voltage direct current (MT-HVDC) systems. In order to minimize the power line losses in different parallel network topologies and to insure the stable operation of systems, a decentralized control method based on a modified droop control is presented in this paper. Averaging the DC output voltage and averaging the output current of two neighboring converters are employed to reduce the congestion of the communication network in a control system, and the decentralized control method is implemented. By minimizing the power loss of the cable, the optimal load current sharing proportion is derived in order to achieve rational current sharing among different converters. The validity of the proposed method using a low bandwidth communication (LBC) network for different topologies is verified. The influence of the parameters of the power cable on the control system stability is analyzed in detail. Finally, transient response simulations and experiments are performed to demonstrate the feasibility of the proposed control strategy for a MT-HVDC system.

Concurrency Conflicts Resolution for IoT Using Blockchain Technology

  • Morgan, Amr;Tammam, Ashraf;Wahdan, Abdel-Moneim
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.331-340
    • /
    • 2021
  • The Internet of Things (IoT) is a rapidly growing physical network that depends on objects, vehicles, sensors, and smart devices. IoT has recently become an important research topic as it autonomously acquires, integrates, communicates, and shares data directly across each other. The centralized architecture of IoT makes it complex to concurrently access control them and presents a new set of technological limitations when trying to manage them globally. This paper proposes a new decentralized access control architecture to manage IoT devices using blockchain, that proposes a solution to concurrency management problems and enhances resource locking to reduce the transaction conflict and avoids deadlock problems. In addition, the proposed algorithm improves performance using a fully distributed access control system for IoT based on blockchain technology. Finally, a performance comparison is provided between the proposed solution and the existing access management solutions in IoT. Deadlock detection is evaluated with the latency of requesting in order to examine various configurations of our solution for increasing scalability. The main goal of the proposed solution is concurrency problem avoidance in decentralized access control management for IoT devices.

Mathematical modeling for flocking flight of autonomous multi-UAV system, including environmental factors

  • Kwon, Youngho;Hwang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.595-609
    • /
    • 2020
  • In this study, we propose a decentralized mathematical model for predictive control of a system of multi-autonomous unmanned aerial vehicles (UAVs), also known as drones. Being decentralized and autonomous implies that all members make their own decisions and fly depending on the dynamic information received from other unmanned aircraft in the area. We consider a variety of realistic characteristics, including time delay and communication locality. For this flocking flight, we do not possess control for central data processing or control over each UAV, as each UAV runs its collision avoidance algorithm by itself. The main contribution of this work is a mathematical model for stable group flight even in adverse weather conditions (e.g., heavy wind, rain, etc.) by adding Gaussian noise. Two of our proposed variance control algorithms are presented in this work. One is based on a simple biological imitation from statistical physical modeling, which mimics animal group behavior; the other is an algorithm for cooperatively tracking an object, which aligns the velocities of neighboring agents corresponding to each other. We demonstrate the stability of the control algorithm and its applicability in autonomous multi-drone systems using numerical simulations.

Decentralized Control Design for Welding Mobile Manipulator

  • Phan, Tan-Tung;Chung, Tan-Lam;Ngo, Manh-Dung;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.756-767
    • /
    • 2005
  • This paper presents a decentralized motion control method of welding mobile manipulators which use for welding in many industrial fields. Major requirements of welding robots are accuracy, robust, and reliability so that they can substitute for the welders in hazardous and worse environment. To do this, the manipulator has to take the torch tracking along a welding trajectory with a constant velocity and a constant heading angle, and the mobile-platform has to move to avoid the singularities of the manipulator. In this paper, we develop a kinematic model of the mobile-platform and the manipulator as two separate subsystems. With the idea that the manipulator can avoid the singularities by keeping its initial configuration in the welding process, the redundancy problem of system is solved by introducing the platform mobility to realize this idea. Two controllers for the mobile-platform and the manipulator were designed, respectively, and the relationships between two controllers are the velocities of two subsystems. Control laws are obtained based on the Lyapunov function to ensure the asymptotical stability of the system. The simulation and experimental results show the effectiveness of the proposed controllers.

A Private Key Management Guideline For Secure Blockchain-Based Services (안전한 블록체인 기반 서비스를 위한 개인키 관리 가이드라인)

  • Noh, Siwan;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.899-914
    • /
    • 2022
  • A blockchain-based decentralized service can offer reliable services without the centralized server by operating the system based on the consensus among byzantine participants. Participants can interact with the blockchain network through a digital signature mechanism but the private key management issue remains unresolved. NIST SP800-57 provides a key-management guidance but this guidance is not appropriate for blockchain-based services because it does not consider a decentralized environment. In this paper, we define the core functions of the blockchain wallet application for private key management and present security protections according to NIST SP800-57, as well as related techniques to satisfy them. Finally, we propose the private key management guideline for secure blockchain-based decentralized services.

Web 3.0 Business Model Canvas of Metaverse Gaming Platform, The Sandbox

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.119-129
    • /
    • 2024
  • We look at Web 3.0 business model canvas (BMC) of metaverse gaming platform, The Sandbox (TS). As results, the decentralized, blockchain-based platform, TS benefits its creators and players by providing true ownership, tradability of decentralized assets, and interoperability. First, in terms of the governance and ownership, The SAND functions a governance token allowing holders to participate in decision and SAND owners can vote themselves or delegate voting rights to other players of their choice. Second, in terms of decentralized assets and activities, TS offers three products as assets like Vox Edit as a 3D tool for voxel ASSETS, Marketplace as NFT market, and Game Maker as a visual scripting toolbox. The ASSETS made in Vox Edit, sold on the Marketplace, can be also utilized with Game Maker. Third, in terms of the network technology, in-game items are no longer be confined to a narrow ecosystem. The ASSETS on the InterPlanetary File System (IPFS) are not changed without the owner's permission. LAND and SAND are supported on Polygon, so that users interact with their tokens in a single place. Last, in terms of the token economics, users can acquire in-game assets, upload these assets to the marketplace, use for paying transaction fees, and use these as governance token for supporting the foundation.

Distributed Identity Authentication System based on DID Technology (DID 기술에 기반 한 분산 신원 인증 시스템)

  • Chai Ting;Seung-Soon Shin;Sung-Hwa Han
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.17-22
    • /
    • 2023
  • Traditional authentication systems typically involve users entering their username and password into a centralized identity management system. To address the inconvenience of such authentication methods, a decentralized identity authentication system based on Distributed Identifiers(DID) is proposed, utilizing decentralized identity technology. The proposed system employs QR code scanning for login, enhancing security through the use of blockchain technology to ensure the uniqueness and safety of user identities during the login process. This system utilizes DIDs and integrates the InterPlanetary File System(IPFS) to securely manage organizational members' identity information while keeping it private. Using the distributed identity authentication system proposed in this study, it is possible to effectively manage the security and personal identity of organization members. To improve the usability of the system proposed in this study, research is needed to expand it into a solution.

Modeling and Analyzing One Vendor-Multiple Retailers VMI SC Using Stackelberg Game Theory

  • Golmohammadi, Amir-Mohammad;Javid, Negar Jahanbakhsh;Poursoltan, Lily;Esmaeeli, Hamid
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.385-395
    • /
    • 2016
  • Game theory is a powerful tool for analyzing the Supply chain (SC) with different conflicting elements. Among them, the Stackelberg game is the one in which a player as leader has more power than the other ones as followers. Since in many SC systems one element has, in essence, more power than the others; the Stackelberg game has found many applications in SC studies. In this paper, we apply the Stackelberg game-theoretic approach and the corresponding equilibrium point to formulate and analyze a two echelon VMI SC. Comprehensive computational results on an experimental case are conducted to numerically analyze the performance of VMI system against three groups of critical parameters. Moreover, a critical comparison demonstrates the poorer performance of decentralized VMI system than centralized one. This naturally necessitates designing proper contracts between VMI partners in order to more effectively implement the realistic decentralized system.

Decentralized Neural Network-based Excitation Control of Large-scale Power Systems

  • Liu, Wenxin;Sarangapani, Jagannathan;Venayagamoorthy, Ganesh K.;Liu, Li;Wunsch II, Donald C.;Crow, Mariesa L.;Cartes, David A.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.526-538
    • /
    • 2007
  • This paper presents a neural network based decentralized excitation controller design for large-scale power systems. The proposed controller design considers not only the dynamics of generators but also the algebraic constraints of the power flow equations. The control signals are calculated using only local signals. The transient stability and the coordination of the subsystem control activities are guaranteed through rigorous stability analysis. Neural networks in the controller design are used to approximate the unknown/imprecise dynamics of the local power system and the interconnections. All signals in the closed loop system are guaranteed to be uniformly ultimately bounded. To evaluate its performance, the proposed controller design is compared with conventional controllers optimized using particle swarm optimization. Simulations with a three-machine power system under different disturbances demonstrate the effectiveness of the proposed controller design.

Effective Decentralized Sampled-Data Control for Nonlinear Systems in T-S' Form: Overlapping IDR Approach (타카기-수게노 형태의 비선형 시스템의 효율적 분산 샘플치 제어: 중복 지능형 디지털 재설계 접근법)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.94-99
    • /
    • 2012
  • This paper discusses a decentralized sampled-data control problem for large-scale nonlinear systems. The system is represented in Takagi-Sugeno's form. Next, we design a decentralized analog controller based on the overlapping decomposition technique. The final step is to apply the intelligent digital redesign scheme for converting the analog controller into the sampled-data one. Design condition is represented in terms of linear matrix inequalities. A simulation result is provided for the effectiveness of the proposed design method.