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ABSTRACT 

Game theory is a powerful tool for analyzing the Supply chain (SC) with different conflicting elements. Among them, 
the Stackelberg game is the one in which a player as leader has more power than the other ones as followers. Since in 
many SC systems one element has, in essence, more power than the others; the Stackelberg game has found many 
applications in SC studies. In this paper, we apply the Stackelberg game-theoretic approach and the corresponding 
equilibrium point to formulate and analyze a two echelon VMI SC. Comprehensive computational results on an exper-
imental case are conducted to numerically analyze the performance of VMI system against three groups of critical 
parameters. Moreover, a critical comparison demonstrates the poorer performance of decentralized VMI system than 
centralized one. This naturally necessitates designing proper contracts between VMI partners in order to more effec-
tively implement the realistic decentralized system. 
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1.  INTRODUCTION 

Ideally, the decisions in SC can be made under the 
tight control of a core decision maker having perfect and 
exact information with the aim of optimizing system 
performance. In general, such a SC named as a central-
ized SC. But, in reality, neither suppliers nor retailers 
could monitor the entire SC. Each element of a given SC 
has its own objectives and priorities; therefore, it would 
naturally like to optimize its own performance rather 
than to optimize the performance of whole system. In 
the other words, under a separated structure, SC elements 
try to individually optimize their performances. Such SC 
referred to as a decentralized SC (Li and Wang, 2007) 
leads to the double marginalization and bullwhip effect 

lessening the SC performance (Wei and Choi, 2010; Lin 
et al., 2010). Accordingly, to promote the performance 
of decentralized SC and bring up nearer to that of cen-
tralized one, designing appropriate contracts and strate-
gies is as a vital task taking by many researchers into 
consideration. In this regard, vendor-managed inventory 
(VMI) is one of the well-known strategies used by many 
firms in the recent two decades. 

VMI is a “pull” replenishment system designed to 
enable vendors to have a quick response to the actual 
demands. It represents a high level of partnership be-
tween vendor and retailer in which the vendor plays as 
the primary decision-maker in the order planning and 
inventory control processes. Under a VMI system, the 
supplier decides on the appropriate inventory levels of 
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each item and the corresponding inventory policies to 
maintain those levels (Tyan and Wee, 2003). Thus, a 
VMI partnership has, in fact, two main characteristics: 
(1) Focusing mainly on the centralized inventory man-
agement by the vendor with the cooperation of retailers, 
and (2) Giving the right to vendor to have the whole 
information about the retailers’ inventory and sales in 
order to properly implement VMI (Yu et al., 2009a). In 
this manner, the vendor has indeed a direct view on the 
demand of final customers and can more accurately pre-
dict their consumption behaviors. Consequently, the bul-
lwhip effect might be avoided to a large extent. Using 
more precise predictions, the vendor could significantly 
improve the production and distribution planning. 
Moreover, in such a system, there is only one control 
point in SC helping to reduce safety stock and to im-
prove the customer service level. On the other hand, the 
retailers are exempted from all or some of costs related 
to the inventory control system; therefore, in long term, 
VMI could increase the profit of both sides-i.e., supplier 
and retailers (Yu H et al., 2009).Many industries are 
widely implementing the VMI system. As a successful 
case of implementing VMI, Ortmeyer and Buzzell (1995) 
mention the cooperation between Wal-Mart and Proctor 
and Gamble in 1985 through which the on-time ship-
ments of P&G as well as the sales of Wal-Mart are sig-
nificantly increased (See for more examples, Challener, 
2000; Shah, 2002; Yu and Huang, 2010). 

2.  STACKELBERG GAME AND ITS EQUI-
LIBRIUM 

Game theory has become as a powerful and essen-
tial tool for analyzing SCs with multiple entities often 
having conflicting objectives. It can work as an ideal 
choice for modeling and analysis when the decisions of 
each entity affect the payoff of the other ones. Game the-
ory deals with interactive optimization problems (Cachon 
and Netessine, 2003). 

Usually, games can be classified to static and dy-
namic games. In the former, players choose their strate-
gies simultaneously while in the latter, each player choo-
ses their strategies sequentially after the prior. The sim-
plest dynamic game was introduced by Stackelberg. In 
Stackelberg game model, player 1 (the leader) chooses a 
strategy at first and then based upon, player 2 (the fol-
lower) designatesa suitable strategy choice. Since in 
most of existing SC models, the upstream entities (e.g. 
wholesalers) are stronger than typically smaller down-
stream ones (e.g. retailers), the Stackelberg equilibrium 
concept has considerably been applied in SC research 
works (Cachon and Netessine, 2003). When one element 
of SC holds greater channel power, it is modeled as a 
Stackelberg game where the element is the leader and 
the others are the followers. In contrast, the equal-power 
scenario is modeled as a simultaneous-decision game 

(Bichescu and Fry, 2009). 
In this paper, Modeling and analyzing the decen-

tralized SC is based on the Stackelberg game theory. To 
find the Stackelberg equilibrium, we need to solve a 
dynamic two-period problem via backward induction: 
first, player 2 (follower) selects the best strategy taking 
all possible strategies of the first player (leader) into 
consideration. Considering the best response of player 2, 
then, player 1 selects an appropriate strategy. If xi and πi 
are the selected strategy and payoff of player i, respec-
tively, the Stackelberg equilibrium can be represented as 
follows (Cachon and Netessine, 2003, Yang et al., 2015): 
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x
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=
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* * *
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∂ ∂ ∂ ∂
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In practice, however, applying the approach of Al-

mehdawe and Mantin (2010) as follows is more conven-
ient: 
Step 1: Formulate the followers’ optimization problem 
Step 2: Formulate the Leader’s optimization problem 
Step 3: Derive the Karush-Kuhn-Tucker (KKT) condi-

tions for the followers’ optimization problem 
Step 4: Involve the KKT conditions in the leader’s op-

timization problem 
 
The solution of final model in Step 4 gives the 

Stackelberg equilibrium. Noteworthily, in order to main-
tain their profit, none of the game players would like to 
deviate from the Stackelberg equilibrium point. If the 
game leader wants to deviate from this point, his/her 
profit decreases. As the followers’ decisions are influ-
enced by the leader’s strategy, the followers also do not 
tend to alter their decisions in the equilibrium point. 

In this paper, we considera single-item SC consist-
ing of one vendor as a leader and multiple retailers as 
followers in which the VMI approach is applied. As 
usual, the demands for item in retailers’ market arechar-
acterized by a decreasing function of the price. The item 
is procured by the vendor in fixed unit cost from an ex-
ternal supplier and is sold to retailers in the same prices. 
The centralized SC at first and decentralized SC after 
that will be described and formulated. The rest of the 
paper is organized as follows. In the next section, we 
provide a brief review on the most related and support-
ive recent studies. Then, we present the problem de-
scription, notations, cost functions and both developed 
models for centralized and decentralized SC. In order to 
analyze the sensitivity of VMI system performance into 
some critical parameters and to compare centralized with 
decentralized SC, several numerical experiments are de-
signed and practical implications are highlighted. We also 
provide an example to clarify the Stackelberg equilibri-
um concept. At the end, we include concluding remarks 
and direction for future research. 
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2.1 Literature Review 

In this section, we present some cases to prove the 
applications of game theory especially the Stackelberg 
game for analyzing VMI approach in SC systems. Ca-
chon and Netessine (2003) are the first researchers that-
widely survey game theory in SC analysis. They discuss 
both non-cooperative and cooperative games and their 
applications. Also, Nagarajan and Sosic (2008) and 
Fierstras et al. (2010) review and analyze the applications 
of game theory in SC management. Many authors use 
different aspects of this theory for analyzing SC in details. 
Yu et al. (2009a, 2009b) apply the Stackelberg game to 
examine a VMI SC with one manufacturer as leader and 
multiple retailers as followers. Using the Stackelberg 
game, Almehdawe and Mantin (2010) provide a compara-
tive study of the VMI SC under two scenarios for game 
lea-der: (1) the manufacturer and (2) one of the retailers. 
Bechesco and Fry (2009) formulate the situation where in 
the supplier has the most power, as the Stackelberg game 
and compare the centralized and decentralized SC; but, 
they do not consider the VMI strategy. 

Yu and Huang (2010) apply Nash game for analyz-
ing VMI system in a three level SC with multiple sup-
pliers, one manufacturer and multiple retailers. YuH et 
al. (2009) study the trend of VMI system using the evo-
lutionary game theory and conclude that in the early 
stage of implementing VMI system, the supplier’s profit 
may decrease; however, in long term all partners of this 
system are profited. Guan and Zhao (2010) apply bar-
gaining process for analyzing two scenarios of imple-
menting VMI system in a one vendor-one retailer SC. 
Kim and Park (2010) apply the system dynamic simula-
tion and differential game theory to analyze the VMI SC. 
Su and Shi (2002) apply a two-stage game to formulate 
and discuss the return and discount policies in a one 
manufacturer-one retailer SC. 

In this paper, we formulate and analyze the imple-
mentation of VMI in a one vendor-multiple retailers SC. 
Although such system is analyzed by Darvish and Odah 
(2010), our developed models involve the following ex-
tensions: (1) in addition to the centralized SC, decentral-
ized VMI SCis formulated using the Stackelberg game 
theory, (2) the demands are practically assumed to be as 
a decreasing function of price, and (3) to attain a more 
practical formulation, some critical parameters such as 
transportation as well as back order costs are considered. 
Also, our paper has the following contributions from the 
numerical analysis view: (1) centralized and decentral-
ized structures of SC are extensively compared by pro-
ducing 100 random cases (2) A perfect and deep sensi-
tivity analysis of VMI system is done. 

3.  PROBLEM FORMULATION 

At first, we provide the parameters and decision 
variables used to develop the proposed models. 

Parameters 
i  Index for retailers, i = 1, …, n 
ei Price elasticity of demand rate for retailer i 
ki  Market scale for retailer i ($/unit) 
Sbi Fixed order cost for retailer i which is paid by the 

vendor ($/order) 
Lbi Back order cost for retailer i which is paid by the 

vendor ($/unit×time) 
Hbi Holding cost paid by the vendor to manage the 

inventory of retailer i ($/unit×time) 
ξi Inventory cost paid to the vendor by retailer i  

($/unit ×time) 
Φi Transportation cost from the vendor to retailer i  

($/unit) 
cm Vendor’s Purchasing cost for each unit of item  

($/unit) 
Sv Fixed order cost for vendor ($/order) 
Hv Holding cost at the vendor’s site ($/unit×time) 

 
Decision variables 
qi Quantity transported to retailer i (

1=
=∑

n

i
i

q q ) 
Q Vendor’s order quantity 
pi Item’s retail price for retailer i ($/unit) 
cp Item’s wholesale price ($/unit) 
Di(pi) Demand rate for retailer i as a function of the re-

tail price pi which is a decision variable 
D Demand rate for the vendor 

1
( )

=

= ∑
n

i i
i

D D p
 Ti  Cycle time for retailer i 

TR  Common cycle time for retailers 
T  Vendor’s cycle time (N = 1/T denotes the number 

of shipments received by a retailer) 
bi Fraction of cycle time in which the demands of 

retailer i are postponed  
πi  Retailer i’s profit ($/time)  
πv  Vendor’s profit ($/time) 
πt  Total profit of VMI system ($/time) 
θ Ratio of VMI system’s total profit under decen-

tralized into centralized SC  
 
Notably, the variables cp, bi, qi and N are determi-

ned by the vendor while pi by the retailers. The other 
decision variables are quantified based upon the formers.  

3.1 Problem Description 

We consider a two-echelon SC consisting of one 
vendor and multiple retailers. The vendor procures item 
in a fixed unit price and order cost from an outside sup-
plier with unlimited stock. The vendor’s warehouse ca-
pacity is also assumed to be unlimited. The demands for 
this item in the retailers’ markets are simulated by a de-
creasing and convex function of item’s retail price using 
the Cobb-Douglas function: 

 
( ) ; 1, 2, , ; 1ie

i i i i iD p k p i n e−= = >L     (2) 
 
Cobb-Douglas function has frequently been used in 

the literature to show the relationship between the prices 
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Figure 1. Inventory control diagram for (a) vendor (b) retailer 1 (c) retailer n. 

and demands(Lau et al., 2007; Choi et al., 2008; Yu et al., 
2009a; Yu et al., 2009b).We assume that the retailers are 
independently act and do not compete to sell the item 
(for example, they are operating in distinct markets). 
Vendor applies the VMI strategy; so, he/she is naturally 
responsible for controlling the inventory in the whole 
SC-i.e., the retailers’ and vendor’s sites. Accordingly, the 
relationship between vendor and retailers is as leader-
followers relationship. We practically assume that both 
parties (i.e., vendor and retailers) are interested in estab-
lishing a long-term relation. The VMI strategy reinfor-
ces such a relationship because retailers are inherently 
less likely to match with a different vendor due to high 
switching costs (Almehdawe and Mantin, 2010). In ac-
cordance with the VMI system, vendor replenishes all 
retailers at the same time, that is, T1 = … = Tn = TR (see 
Figure 1). This is a reasonable policy because the ven-
dor makes the decisions regarding the replenishment 
time and amount (Darvish and Odah, 2010). 

{Please insert figure 1 near here.} 

3.2 The SC’scost Functions 

Based on the assumptions presented in the previous 
subsection, we represent the cost functions of the con-
sidered SC. By subtracting such functions from the SC’s 
revenues-either in centralized or in decentralized case-, 

we could determine the SC’s profits. The SC’s costs can 
be divided into direct and indirect costs. Direct costs are 
related to the procurement of item from the supplier and 
transportation from the vendor to the retailers. Indirect 
costs are the charges of inventory control systems for 
the vendor and retailers. The direct costs (TDC) can be 
determined by the following equation: 

 

1
( )( )

=

= + Φ∑
n

i i i
i

TDC D p cm              (3) 

 
It is clear that we have: 
 

; 1, 2, ,i
i

i

qT i n
D

= = L

      
(4) 

 
Therefore, as applying the same replenishment cy-

cles for all retailers, we have: 
 

1 2

1 2

= = = =L n
R

n

q q qT
D D D        

(5)  

 
For the vendor’s replenishment cycle, the following 

equation may be concluded: 
 

1 2

1 2

= ⋅ = ⋅ = ⋅ = = ⋅L n
R

n

q q qT N T N N N
D D D

  (6) 
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Accordingly, calculating the indirect costs in the 
considered SC is expressed as follows: 

The inventory holding cost in cycle T, incurred by 
the vendor, in his own warehouses, is as follows:  

 
2 2 2

( 1) ( 2)v v
q q qTHC H N N
D D D

⎡ ⎤
= ⋅ − ⋅ + − ⋅ + +⎢ ⎥

⎣ ⎦
L   

2
1

2
1 1

( 1)
2[ ( )]v

N N q DH
D p
− ⋅ ⋅

= ⋅

                   
(7) 

 
We note that Eq. (7) is obtained by replacing 

q
D

 

with its equivalent expression (i.e., 1

1 1( )
q

D p
). 

The total ordering costs in cycle T is equal to vS +

 
1

n

bi
i

N S
=

⋅ ∑  

Also, the inventory holding costs in warehouse of 
retailer i in one cycle TR is quantified as follows: 

 
2 2 2 2( ) (1 ) ( )

2 2
i i R i i i R i

bi bi bi
D p T b D p T bTHC H L⋅ − ⋅

= ⋅ + ⋅     (8) 

 
Thus, the inventory holding cost in warehouse of 

retailer i can be expressed by the following equation: 
 

2 21

1 1

[ ( ) (1 ) ( ) ]
2 ( )

= ⋅ ⋅ − ⋅ + ⋅ ⋅bi i i i bi i i i bi
qTHC D p b H D p b L

D p
 (9) 

 
Finally, the total costs of inventory control systems 

(i.e., indirect costs) denoted as TIC is as follows: 
 

( )2 21

11 1

( ) (1 ) ( )
2 ( )

n

i i i bi i i i bi
i

qTIC D p b H D p b L
D p =

⎡ ⎤= ⋅ ⋅ − ⋅ + ⋅ ⋅⎢ ⎥
⎣ ⎦
∑

 
1 1 1

11 1 1

( 1) ( )( )
2 ( )

n

v v bi
i

N q D D pH S N S
D p N q=

− ⋅
+ ⋅ + + ⋅ ⋅

⋅∑
      

(10) 

3.3 Formulating Centralized SC as a Mixed-
Integer Non-Linear Program 

As stated before, in a centralized structure one core 
decision maker has the accessibility to all information of 
the whole SC; therefore, incurs the whole system costs 
and benefit the whole system profits. Although this is 
only an ideal case, we can use this structure as a bench-
mark to analyze the decentralized structure. Notably, for 
analyzing centralized structure, we did not need game 
theory. Considering the direct and indirect costs in equa-
tions (3) and (10), total profit for centralized SC is given 
as follows: 

 

1
( )

n

t i i i
i

p D p TDC TICπ
=

= ⋅ − −∑       (11) 

 
Now, the optimal performance of centralized system 

can be determined by the following mixed-integer non-
linear program (MINLP): 

 
Model L1: 

1
Max ( )

n

t i i i
i

D p p TDC TICπ
=

= − −∑
 Subject to: 

;ip cm i> ∀

 0 1;ib i≤ ≤ ∀               (12) 
0; IntegerN ≥

 

 
 
The first constraint ensures that the sales price in 

retailers’ markets is more than the purchasing price. In 
the second constraint, the value of bi is logically limited 
between zero and one. 

3.4 Formulating Decentralized SC as a Mixed-
Integer Non-Linear Program 

Assuming the vendor as leader, we apply the Stac-
kelberg game theory for modeling and analyzing the 
decentralized system. Retailer i, as a follower, optimizes 
the following problem: 

 
Model Fi: 

Max ( ) ( ) ( )i i i i i ip p cp D pπ ξ= − − ⋅  
Subject to: 

;i ip cp iξ≥ + ∀      (13) 
 
At bellow, we present a theorem on model Fi to bet-

ter support and clarify the practical findings in the nu-
merical experiments which will be established later for 
the analysis of the performance of the considered SC. 

 
Theorem 1: The optimal value of pi is equal to 

*
ip =

 ( )
1
i i

i

cp e
e
ξ+ ⋅
−

. 

 
Proof: 

( 1)(1 ) ( ). ;i ie ei
i i i i i i i

i

d e k p e cp k p i
dp
π ξ− − += − ⋅ ⋅ + ⋅ + ⋅ ∀  (14)

 
 

Also, 

2

2 0i

i

d
dp
π

<

 

which means iπ  
is a strictly concave 

function of pi; therefore, the optimal value of pi is de-
termined by setting the derivative in (14) to zero. We 
have: 

 
* ( )0

1
i i i

i
i i

d cp ep
dp e
π ξ+ ⋅

= ⇒ =
−

       (15) 

 
Since ei >1, the optimal value of pi satisfies the 

constraint of model Fi. However, the retailers cannot 
directly determine 

*
ip  because it is a function of cp de-
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termined by the vendor. But, benefiting such an equation 
especially in numerical analysis of decentralized SC can 
be worthwhile. Q.E.D. 

The Total revenue of vendor is calculated by the 
following equation: 

 

1
( ) ( )

n

i i i
i

D p cp ξ
=

⋅ +∑      (16) 

 
Based on the VMI strategy, the vendor is responsi-

ble for inventory control in the whole system and should 
endure all of the corresponding costs in decentralized 
structure. So, the vendor as a game leader optimizes the 
following problem: 

 
Model V: 

1
( , , , ) ( ) ( )

n

v i i i i i
i

Max N cp q b D p cp TDC TICπ ξ
=

= ⋅ + − −∑  

Subject to: 
;cp cm>  

0 1;ib i≤ ≤ ∀            (17) 
0; IntegerN ≥

  
To find the Stackelberg equilibrium point, the KKT 

conditions is derived from the retailers’ models (Fi) and 
substituted in the vendor’s model (V). The sequence of 
decisions is as follows. First, the vendor, as the Stackel-
berg leader, determines the item’s wholesale price (cp), 
the quantity to be transported to each retailer (qi), the 
fraction of backorder time in any cycle for each retailer 
(bi), and the number of retailers’ replenishments (N). 
Thereafter, the profit maximizing retailers, as the fol-
lowers, determine the retail prices in their corresponding 
markets. 

The KKT conditions for retailer i are formulated as 
follows: 

 
0 0;i i ip cp rξ− − ≥ ⊥ ≥      (18) 

( 1)(1 ) ( ) 0 0i ie e
i i i i i i i i ie k p e cp k p r pξ− − +− ⋅ ⋅ + ⋅ + ⋅ ⋅ + ≤ ⊥ ≥  
 

where ri is the dual variable for each retailer’s constraint 
(13), and the ⊥  symbol is used to show the orthogonal 
relationship between the followers’ complementary con-
ditions. 

Involving the KKT conditions (18) in the vendor’s 
optimization problem (V) and penalizing (by big num-
ber M) the violation of the complementary conditions in 
the objective function, model L2 is formulated as a new 
MINLP: 

 
Model L2: 

1

( , , , , ) ( ) ( )
n

v i i i i i i
i

Max N cp q b p D p cpπ ξ
=

= ⋅ +∑  

1

( )
n

i i i
i

TDC TIC M r p cp ξ
=

− − − ⋅ ⋅ − −∑  

1

[(1 ) i

n
e

i i i i
i

M p e k p −

=

+ ⋅ ⋅ − ⋅ ⋅∑  

( 1)( ) ]ie
i i i i ie cp k p rξ − ++ ⋅ + ⋅ ⋅ +  

Subject to: 
;cp cm>   

0 1;ib i≤ ≤ ∀   
;i ip cp iξ≥ + ∀  (19) 

( 1)(1 ) ( ) 0i ie e
i i i i i i i ie k p e cp k p rξ− − +− ⋅ ⋅ + ⋅ + ⋅ ⋅ + ≤  
0; IntegerN ≥  

 
As it can be seen, we try to provide a closed equa-

tion for determining the optimal value of bi in models L1 
and L2. We apply theorem 2 as a useful tool in numerical 
analysis. 

 
Theorem 2: The optimal value of bi in models L1 and L2 
is equal to bi

bi bi

H
H L+

.
 

 
Proof: 

For model L2, we have: 

[ ( ) (1 ) ( ) ]
( )

v i
i i bi i i i bi i

i i i

q D p H b D p L b
b D p
π∂

= ⋅ ⋅ ⋅ − − ⋅ ⋅
∂

 

2

2 [ ( ) ( ) ] 0
( )

v i
i i bi i i bi

i i i

q D p H D p L
b D p
π∂

= − ⋅ ⋅ + ⋅ ≤
∂

 (20) 

 
Therefore, the function πv is strictly concave with 

respect to bi and the optimal value of bi can be deter-
mined by setting the above derivative to zero: 

 
*0v bi

i
i bi bi

Hb
b H L
π∂

= ⇒ =
∂ +

   (21) 

 
Obviously, 

*
ib  satisfies the constraints of model L2.  

The proof for model L1 is exactly the same as the 
one for model L2.Q.E.D. 

3.5 An Example for the Stackelberg Equilibrium 

The Stackelberg equilibrium point is the stable 
point of the game. In fact, none of the players in the 
equilibrium point will change their decisions and strate-
gies. Table 1 gives the parameters of a one vendor-three 
retailers case used for sensitivity analysis purposes. No-
tably, to generate the input data of our case in Table 1, 
we try to appropriately consider the suggestions of the 
other research work son VMI systems (Yu et al., 2009a, 
2009b; Almehdawe and Mantin, 2010) and some proper-
ties of Cobb-Douglas function in equation 2. Table 2 
indicates an example of Stackelberg equilibrium point 
by changing the wholesale price. In the equilibrium state, 
the purchasing price is 265 and it can be seen that for the 
prices being less or more than 265, the vendor’s profit is 
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 Table 1. Parameters of the one vendor-three retailers case 

Vendor’s data Retailers’ data 
cm Sv Hv Sbi Lbi Hbi Φi ξi ei ki (×104) 
50 
 
 

150 
 
 

1 
 
 

100 
120 
110 

500 
300 
200 

6 
8 
7 

6 
5 
11 

5 
8 
5 

1.2 
1.5 
1.4 

390 
160 
320 

 
Table 2. Example of Stackelberg game equilibrium 

350 300 265a 200 150 100 cp 
70.17904 72.34244 74.10536 78.32535 82.82933 89.53962 π1(×104$) 

17.39264 17.5436 17.58411 17.31864 16.32817 13.01044 πv(×104$) 

104.0487 107.4451 110.1570 116.3841 122.4762 129.9998 πt(×104$) 
a Equilibrium point. 

 
Table 3. The Influence of vendor’s purchasing price on the VMI system performance 

cm N q1 cp p3 π3 (×104$) πv (×104$) πt (×104$)
Base 2 200 265 946 14.7431 17.5841 110.157 
75 2 162 387 1,371 12.7098 15.9454 100.56 
100 2 139 509 1,800 11.3988 14.8544 94.121 
125 2 121 658 2,319 10.3012 13.916 88.548 

reduced. Therefore, the vendor sells to the retailers at 
265 currency units and retailers determine their strategy 
according to this price. Noteworthily, each retailer only 
determines its own price and based on the theorem 1, the 
retail prices are directly related to the wholesale price. 
Accordingly, since the vendor does not change his/her 
strategy in the equilibrium point; retailers thus do not so.  

4.  NUMERICAL ANALYSIS OF DECEN-
TRALIZED VMI SC 

In this section, we conduct some numerical analy-
sis to gain some insights regarding the outcomes of 
modelL2.We assess the sensitivity of results to changes 
in critical parameters of both parties (i.e., the vendor and 
retailers). To do this, three groups of parameters are tak-
en into account including those related to the vendor 
system (i.e., purchasing price and transportations cost), 
the retailers’ markets (i.e., price elasticity and market 
scale) and the inventory control system (i.e., holding, 
backorder and ordering costs). All numerical analysis in 
this section is conducted for case 1 in Table 1. The 
mathematical models were developed by Lingo 13 op-
timization package. Notably, in some reports, only the 
results for one retailer are illustrated for the sake of 
compression while they are correct also for the other 
retailers. 

4.1 Vendor’s Parameters 

Hereby, we report the analytical results regarding 

the variations in parameters related to the vendor system 
(i.e., purchasing price and transportations cost). 

 
Vendor’s purchasing Price (cm) 

Table 3 shows the effect of changes in vendor’s pur-
chasing price on the performance of VMI system partners. 
As it can be seen, by increasing cm, the profits of vendor, 
all retailers, and consequently the whole system will be 
decreased. Also, by increasing cm, the wholesale price 
increases. This increase, according to theorem1, leads to 
an increment in retailers’ prices and consequently a dec-
rement in retailers’ demands. Considering the reverse re-
lation between the order quantities and the demands (i.e., 
Eq. (4)), it can be concluded that by increasing cm, the 
quantities transferred to each retailer will be decreased. 
So, in general, we have: 

 
,

( ), , , ,
i

i i i i v t

cp p
cm

D p q π π π

⎧ ↑⎪↑ ⇒ ⎨
↓⎪⎩

       (22) 

 
Transportation Cost (Φi) 

Table 4 illustrates the impact of transportation cost 
on the performance of VMI system. The Transportation 
cost for each retailer is increased from the base value 
given in Table 1 by the values in the Table 3. As ob-
served, by increasing the transportation cost, the whole-
sale and retailers’ prices are increased (based on theorem 
1). In contrast, the profits of vendor, retailers and the 
whole system will be decreased. Also, the value of trans-
fer lot to retailer 1 is decreased because of an increment 
in retailers’ prices and a decrement in retailers’ demands. 
In brief, we can conclude that: 
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Table 4. The impact of transportation cost on VMI system performance 

Φ N q1 cp p3 π3 (×104$) πv (×104$) πt (×104$)
Base 2 200 265 946 14.7431 17.5841 110.157 

5 2 192 286 1,021 14.3051 17.239 108.129 
10 2 182 314 1,116 13.8029 16.8337 105.773 
 

 

 
Figure 2. The impact of price elasticity on system performance (a) vendor (b) retailer 1(c) retailer 2 (d) retailer 3. 

,

( ), , , ,
i

i
i i i i v t

cp p

D p q π π π

⎧ ↑⎪Φ ↑ ⇒ ⎨
↓⎪⎩

      (23) 

4.2 Retailers’ Markets Parameters 

In this subsection, we demonstrate the analytical 
results regarding the variations in Retailers’ markets 
parameters (i.e., price elasticity and market scale). 

 
Price Elasticity  

Table 5 and Figure 2 show the effect of change in 
e1 (i.e., the price elasticity of retailer 1) on VMI system 
performance. As pointed, increments in e1 result in a 
reduction in the prices and profits of both vendor and 
retailer 1. Although raising e1 diminishes also the prices 
of the other retailers, it can increase their profits instead. 

We note that the retailers’ markets are independent; how-
ever, because parameter e1 affects the vendor perfor-
mance, the outcomes of the other retailers may naturally 
be influenced indirectly. According to Eq. (1), we cannot 
assess the direction of changes in the demands of retailer 
1. Finally the following observations may be deduced: 

 
, , , , , ( )

( ), , ( )
i i v t j

i
j j j j

cp p p j i
e

D p q j i

π π π

π

⎧ ≠ ↓⎪↑ ⇒ ⎨
≠ ↑⎪⎩

   (24) 

 
Market Scale 

In Table 6, we try to draw and analyze the impact 
of k (i.e., the market scale) on the system outcomes. 
Based on theorem 1, it can be seen that increasing k2 
leads to (1) the decrease in the wholesale and retail pric-
es, (2) the increase in vendor’s and retailer 2’s profits. 
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Table 5. Influence of price elasticity on VMI system performance 

e1 N q1 cp p1 p2 p3 π1 (×104$) π2 (×104$) π3 (×104$) πv (×104$) πt (×104$)
Base 2 200 265 1622 820 946 74.1054 3.72446 14.7431 17.5841 110.157 
1.3 2 179 221 977 686 789 38.028 4.07361 15.8526 14.5196 72.474 
1.4 2 144 197 708 616 708 20.1834 4.29908 16.5607 11.8121 52.855 
1.5 2 107 186 572 581 667 10.874 4.42643 16.9581 9.8198 42.078 

 
Table 6. The influence of market scale on the VMI system performance 

k2 N q1 cp p1 p2 p3 π1 (×104$) π2 (×104$) π3 (×104$) πv (×104$) πt (×104$)
base 2 200 265 1622 820 946 74.1054 3.72446 14.7431 17.5841 110.157 
210 2 202 260 1593 806 929 74.3733 4.93217 14.8499 18.0466 112.202 
260 2 205 256 1567 792 914 74.6247 6.15764 14.9504 18.5111 114.244 
310 2 210 252 1542 780 899 74.8608 7.39936 15.0452 18.9773 116.283 

 
Table 7. The impact of holding cost in retailer side on the VMI system performance 

Hbi N q1 p3 π3 (×104$) πv (×104$) πt (×104$) cp 
base 2 200 946 14.7431 17.5841 110.157 265 
10 2 155 952 14.7035 17.521 109.942 267 
20 3 123 957 14.6726 17.4719 109.775 268 
 

Table 8. The effect of ordering cost in vendor side on the VMI system performance 

Sv N q1 p3 π3 (×104$) πv (×104$) πt (×104$) cp 
base 2 200 946 14.7431 17.5841 110.157 265 
100 1 221 945 14.749 17.5936 110.189 265 

 

Though, the changes in the profits of the other retailers 
are almost inconsiderable. This is because the demands 
of the other retailers are only influenced by the decrease 
in the wholesale and retail prices while those of retailer 
2 are also under effect of the market scale. The-refore, 
the changes in the demands of retailer 2 are definitely 
much more than those of the other retailers. 
So, in general, we can say that (Wei and Choi, 2010): 
 

, , ( )

, , , , , , ( )

( )

i j

i i i i v t j j

j

cp p p j i

k D q D q j i

j i

π π π

π

⎧ ≠ ↓
⎪⎪↑ ⇒ ≠ ↑⎨
⎪ ≠ ↔⎪⎩

    (25) 

 
Generally, the retailers’ market parameters and par-

ticularly the price elasticity have a significant effect on 
the system performance.  

4.3 Inventory Control Parameters 

Our analysis indicates that parameters related to the 
inventory control system have less impact on the values 
of profits and prices in VMI system. However, these 
parameters sometimes could influence on the policy of 
inventory control system applied by the vendor. Table 7 

gives the effect of inventory holding costs in the ware-
house of retailerson the system performance. The value 
of Hbi is increased from the base value denoted in Table 
1. We can see that when the holding costs in the retail-
ers’ sites are increased from the base value by 20 currency 
units, the number of replenishments increases from 2 to 
3. Also, table 8 illustrates the effect of Sv (i.e., the order-
ing costs) on the system performance. Again, we ob-
serve that decreasing Sv from 150 to 100 leads to a re-
duction in N-i.e., from 2 to 1. 

4.4 Comparing Centralized and Decentralized 
Systems 

In order to compare the performance of centralized 
and decentralized SCs, we use the proposed approach of 
Guan and Zhao (2010). If πc and πd is assumed to be the 
profit of centralized and decentralized systems, respec-
tively, then parameter θ is defined as follows:  

 
d

c

πθ
π

=     (26) 

 
The value of θ is between 0 and 1. The more the 
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Table 9. Domain and step of variations for randomly generated parameters 

cm Sv Hv Φi Sbi Lbi Hbi ξi
 ei ki (×104) Parameter 

50-200100-2001-4 2-15 20-150100-5005-10 2-15 1.2-1.7 150-400 Domain of variations 
10 10 1 1 10 100 1 1 0.1 1000 Step of variations 

 
Table10. Comparing the performance of centralized and decentralized systems 

θ πt (×104$)πv (×104$) πt (×104$)pi bi cp qi Di N  
- 
 
 

135.9806
 
 

- 
 
 

- 
 
 

339
167
215

0.011858 
0.025974
0.033816

- 
 
 

482 
99 
233 

3,590 
742 

1,733 

2 
 
 

Centralized 

0.81
 
 

110.157 
 
 

17.58411 
 
 

74.10536
3.724461
14.74306

1622
820
946

0.011858
0.025974
0.033816

265 
 
 

199 
25 
79 

548 
68 
218 

2 
 
 

Decentralized 

value of θ, the closer the profit of decentralized system 
to centralized one proving better performance of decen-
tralized VMI system. For comparing purposes, 100 nu-
merical problems were generated at random based on 
the suggestions of the other researchers in their works 
on VMI system (Yu et al., 2009a; 2009b, Almehdawe 
and Mantin, 2010). Table 9 gives the domain and step of 
variations of randomly generated data.  

In Table 10, as an example, we illustrate the result 
of comparison for case 1 in Table 1. As observed, the 
transfer lot for retailer 1 in centralized system is 482 
units while in decentralized one is only 199 units. Also, 
retailer 1 sells at 339 currency units in centralized sys-
tem whereas in decentralized system at 1,622. Similar 
comparisons can be established for the other retailers. 
Finally, as a critical criterion, the ratio of decentralized 
profit to centralized profit (i.e., θ) is 0.81 for this case.  

Thereafter, both models L1 and L2were solved to 
obtain the value of θ for all 100 random numerical tests. 
The result of comparison indicates that the performance 
of considered SC in decentralized state is very different 
than centralized state. In fact, in decentralized state, in 
addition to a decrease in system’s profit, the selling prices 
in retailers’ market are also very different from central-
ized state. For example, selling price of retailer 1 in de-
centralized state is, in average, fourfold of the one in 
centralized state. The results of 100 random cases indi-
cate that the average and minimum value of θ is 0.79 
and 0.55, respectively. 

According to the reported numerical results and the 
previous studies on different VMI systems established 
by the other researchers (Guan and Zhao, 2010; Almeh-
dawe and Mantin, 2010), it seems that the considered 
decentralized VMI SC has a poor performance com-
pared to the centralized one. So, it seems that a critical 
area of research is to design the suitable contracts be-
tween vendor and retailers for improving decentralized 
system performance. This falls in the scope of designing 
contract for the VMI system and will be an interesting 
direction for future researches. 

5.  CONCLUSION 

The proposed SC in this article was a two echelon 
SC, which consists of one vendor and multiple retailers. 
Assuming the vendor as a leader, we used the Stackel-
berg game theory for modeling and analyzing this sys-
tem. In addition to the modeling of centralized structure, 
the decentralized SC was also modeled based on the 
Stackelberg game theory to analyze the system perfor-
mance. Also, comprehensive analytical results for the 
VMI system performance were provided through a near 
to real numerical case inspired by the outcomes of this 
and the previous researches on VMI SC. Results of our 
analysis indicate that some parameters like price elas-
ticity has a significant effect on the VMI system’s per-
formance while some other parameters like the invento-
ry control parameters do not show such significant ef-
fects. Comparing the performance of the centralized and 
decentralized SC through on hundreds of randomly gen-
erated test problems indicates that the decentralized state 
inherently has a poor performance because both the 
profits and prices of all elements (i.e., vendor and retail-
ers) are significantly different from centralized state. As 
a result, an interesting direction for future developments 
of this research is to investigate and design different 
proper contracts between SC elements and VMI partners, 
in order to improve the performance of decentralized 
system.  
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