• Title/Summary/Keyword: a decentralized

Search Result 878, Processing Time 0.028 seconds

Decentralized Control for Multimachine Power Systems with Nonlinear Interconnections and Disturbances

  • Jung, Kyu-Il;Kim, Kwang-Youn;Yoon, Tae-Woong;Gilsoo Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.83.3-83
    • /
    • 2002
  • $\textbullet$ In this paper, a robust decentralized excitation control scheme is proposed $\textbullet$ We prove that the proposed control system is practically stable $\textbullet$ The origin is globally uniformly asymptotically stable in the absence of the disturbance $\textbullet$ If assumption is not satisfied, the proposed control system is still guarantees L2 stability $\textbullet$ Simulations for a three-machine power system demonstrates the effectiveness of the proposed scheme

  • PDF

On Decentralized Aadaptive Controller Design

  • Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.140-145
    • /
    • 1992
  • This paper presents a decentralized model reference adaptive control scheme for an interconnected linear system composed of a number of single-input single-output subsystems in which outgoing interactions pass through the measurement channel and are subjected to bounded external disturbances. The scheme can treat the unknown strength of interactions as well as uncertainties in subsystem dynamics, and allows for the case when the relative degree of each decoupled subsystem does not exceed two.

  • PDF

Decentralized Adaptive Control of Interconnected System using Off-Set Modeling (오프셋 모형화 기법을 이용한 상호연관 시스템의 분산형 적응제어)

  • 양흥석;박용식;주성순
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.879-883
    • /
    • 1988
  • In this paper, self tuning control of interconnected systems are dealt in view point of large scale system control. The plant model is given in MIMO ARMA procss. This process is simlified as independent SISO ARMA processes having offset terma, which are considered as effects of interconnections. In each decentralized system, self tuning controller with instrumental variable method is adopted. As a result, this algorithm enables the paramter estimation to be unbiased and non-drift. This controller contains a new implicit offset rejection technique. Simulation results consider well with the analysis in case of linear interconnection.

  • PDF

A Decentralized Face Mask Distribution System Based on the Decentralized Identity Management (블록체인 분산신원증명에 기반한 탈중앙화된 마스크 중복구매 확인 시스템)

  • Noh, Siwan;Jang, Seolah;Rhee, Kyung-Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.315-320
    • /
    • 2020
  • Identity authentication is an important technology that has long been used in society to identify individuals and provide appropriate services. With the development of the Internet infrastructure, many areas have expanded into online areas, and identity authentication technologies have also expanded online. However, there is still a limit to identity authentication technology that relies entirely on trusted third parties like the government. A centralized identity management system makes the identification process between agencies with different identity management systems very complex, resulting in a waste of money and time for users. In particular, the limits of the centralized identity management system were clearly revealed in the face mask shortage in the 2020 COVID-19 crisis. A Decentralized Identity (DID) is a way for users to manage their identity on their own, and recently, a number of DID platform based on blockchain technology have been proposed. In this paper, we analyze the limitations of the existing centralized identity management system and propose a DID system that can be utilized in future national emergency situations such as COVID-19.

A Survey of Decentralized Finance(DeFi) based on Blockchain

  • Kim, Junsang;Kim, Seyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.59-67
    • /
    • 2021
  • Blockchain technology began in 2008 when an unidentified person named Satoshi Nakamoto proposed a cryptocurrency called Bitcoin. Satoshi Nakamoto had distrust of the existing financial system and wanted to implement a financial system that is robust against hacking or mannipulation without a middleman such as a bank through blockchain technology. Satoshi proposed a blockchain as a technology to prevent the creation of the bitcoin and forging of transactions, and through this, the functions of issuance, transaction, and verification of currency were implemented. Since then, Ethereum, a cryptocurrency that can implement the smart contract on the blockchain, has been developed, allowing financial products that require complex contracts such as deposits, loans, insurance, and derivatives to be brought into the area of cryptocurrency. In addition, it is expanding the possibility of substituting products provided by financial institutions through combination with real assets. These applications are defined as Decentralized Finance (DeFi). This paper was prepared to understand the overall technical understanding of DeFi and to introduce the services currently in operation. First, the technologies and ecosystems that implement the overall DeFi are explained, and then the representative DeFi services are categorized by feature and described.

Study on the Changes in Evapotranspiration according to the Decentralized Rainwater Management (분산식 빗물관리시설 적용에 따른 증발산 변화 연구)

  • Han, Young-Hae;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.12 no.5
    • /
    • pp.3-10
    • /
    • 2012
  • In this study, the influence of decentralized rainwater management over the changes in evapotranspiration was analyzed. The analysis method was obtained by establishing the decentralized rainwater management plan according to different scenarios, and subsequently examined evapotranspiration in the plan. Scenario 1 refers to the analysis of the existing situation, in which was 100% of a parking lot is asphalt pavement. In Scenario 2, the pavement of the parking surface in the parking lot is replaced with lawn blocks. In Scenario 3, some asphalt pavement was removed to establish a flower-bed type infiltration system to allow rainwater to permeate. In Scenario 4, infiltration and storage of rain water would be achieved by transforming the parking surface into lawn blocks, keeping the asphalt for the parking road while establishing a vegetation strip. The amount of evapotranspiration of the target site was analyzed with a water budget analysis program (CAT) using the 2001 meteorological data for each scenario According to the analysis values of S2 and S3, it was found that evapotranspiration is critically affected by the amount of area replaced with pervious area in the total target site. An energy equivalent to 680kWh is required for 1 ton of water to evaporate. Hence, it can be seen that the active inducement of evapotranspiration in urban area makes a positive contribution not only to heat island mitigation, but also to the small-scale water circulation process in a city.

Anonymous Blockchain Voting Model using the Master Node Network (마스터 노드 네트워크를 사용한 블록체인 익명 투표 모델)

  • Cho, Jae-Han;Lee, Lee-Sub;Choi, Chang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.394-402
    • /
    • 2021
  • Electronic voting systems have been widely used in many countries around the world since the mid-1990s. In recent years, studies have applied blockchain to existing electronic voting systems in order to provide reliability, fairness, and transparency for voters. This approach is highly useful as a technology that promotes decentralized citizen participation. However, the existing electronic voting systems using blockchain have not sufficiently considered anonymity. Lack of anonymity acts as an important constraint in cases of small- and medium-sized voting, which is often required in decentralized citizen participation. In this study, we propose a model that provides anonymity to a voting system using blockchain by applying the concept of the master node in Dash cryptocurrency. First, we define the differences in the requirements of the transfer and voting systems in blockchain. We propose a parallel and autonomous model and algorithm to provide anonymity in the blockchain-that is, a decentralized development environment. In addition, a discussion of security and the environment for the proposed model is described.

A case study about exterior space design of apartments using Linear infiltration system (선형침투시스템의 공동주택 외부공간 적용 방안 연구)

  • Moon, Soo-young;Kim, Hyeon-soo;Jang, Dae-hee;Lee, Keon-ho
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.9-15
    • /
    • 2007
  • As environmental problems and water-shortage phenomenon become a global issue, many states look for the effective method to use water resources. So, decentralized rainwater management is recognized as a new water management system that rainwater can be infiltrated and used on-site. But it is little difficult to build a park, lake, and forest for evaporating rainwater in city because the land price of city is very high. In order to build an excellent infiltration system for a dwelling and a park in Korea, KICT has developed Linear infiltration system. This infiltration system is consist of first flush treatment, storage and infiltration, overflow control system. These elements are connected closely and working as a combined system. A storm sewer can be changed by the linear infiltration system. This study is to show real application idea about Linear infiltration system with improving some detail in apartments. For this purpose, we devide application idea into the artificial ground and the natural ground and each ground type, suggest a method to cooperate with the other landscape and linear infiltration system. Through this study, we came to recognize a recognition difference of an expert and a commoner about decentralized rainwater management.

Task Rescheduling Using a Coordinator in a Structural Decentralized Control of Supervisory Control Systems

  • Lee, Sang-Heon;Kim, Ill-Soo;Kai C. Wong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.22-31
    • /
    • 2004
  • A problem of task rescheduling using a coordinator in a structural decentralized control of supervisory control theory is formulated. we consider that the overall system is divided into a number of local systems. Using an example of a chemical batch reaction process, it has shown that after local supervisors have been established for a given task, a coordinator can be used to solve some rescheduling problems among local plants for new or modified tasks. The coordination system models the interactions of local plants, and is consisting of only the shared events of local plants, so simpler to synthesize. A coordinator is designed based on the specifications given for the coordination system. Under the 'structural' conditions developed in this paper, the combined concurrent actions of the coordinator with the existing local supervisors will achieve the rescheduling requirements. Again since the conditions are structural (not specification-dependent), once the coordination architecture has been established, it can be used for a number of different tasks without further verifications.

A Study on Efficient Data De-Identification Method for Blockchain DID

  • Min, Youn-A
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.60-66
    • /
    • 2021
  • Blockchain is a technology that enables trust-based consensus and verification based on a decentralized network. Distributed ID (DID) is based on a decentralized structure, and users have the right to manage their own ID. Recently, interest in self-sovereign identity authentication is increasing. In this paper, as a method for transparent and safe sovereignty management of data, among data pseudonymization techniques for blockchain use, various methods for data encryption processing are examined. The public key technique (homomorphic encryption) has high flexibility and security because different algorithms are applied to the entire sentence for encryption and decryption. As a result, the computational efficiency decreases. The hash function method (MD5) can maintain flexibility and is higher than the security-related two-way encryption method, but there is a threat of collision. Zero-knowledge proof is based on public key encryption based on a mutual proof method, and complex formulas are applied to processes such as personal identification, key distribution, and digital signature. It requires consensus and verification process, so the operation efficiency is lowered to the level of O (logeN) ~ O(N2). In this paper, data encryption processing for blockchain DID, based on zero-knowledge proof, was proposed and a one-way encryption method considering data use range and frequency of use was proposed. Based on the content presented in the thesis, it is possible to process corrected zero-knowledge proof and to process data efficiently.