• Title/Summary/Keyword: a conditional probability

Search Result 295, Processing Time 0.033 seconds

Performance Analysis of FSO Communication Systems with Photodetector Multiplexing

  • Feng, Jianfeng;Zhao, Xiaohui
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.440-455
    • /
    • 2017
  • In this paper, we carry out a performance analysis of a two-user free-space optical (FSO) communication system with photodetector multiplexing, in which the two users are defined as the primary user (PU) and secondary user (SU). Unlike common single-user FSO systems, our photodetector multiplexing FSO system deploys a shared detector at the receiver and enables PU and SU to send their own data synchronously. We conduct the performance analysis of this FSO system for two cases: (1) in the absence of background radiation, and (2) in the presence of background radiation. Decision strategies for PU and SU are presented according to the two scenarios above. Exact and approximate conditional symbol-error probability (SEP) expressions for both PU and SU are derived, in an ideal channel with no fading. Average SEP expressions are also presented in the no-background-radiation scenario. Additionally, in some particular cases where the power ratio tends to 0.5 or 1, approximate SEP expressions are also obtained. Finally, numerical simulations are presented under different conditions, to support the performance analysis.

Bivariate Dagum distribution

  • Muhammed, Hiba Z.
    • International Journal of Reliability and Applications
    • /
    • v.18 no.2
    • /
    • pp.65-82
    • /
    • 2017
  • Abstract. Camilo Dagum proposed several variants of a new model for the size distribution of personal income in a series of papers in the 1970s. He traced the genesis of the Dagum distributions in applied economics and points out parallel developments in several branches of the applied statistics literature. The main aim of this paper is to define a bivariate Dagum distribution so that the marginals have Dagum distributions. It is observed that the joint probability density function and the joint cumulative distribution function can be expressed in closed forms. Several properties of this distribution such as marginals, conditional distributions and product moments have been discussed. The maximum likelihood estimates for the unknown parameters of this distribution and their approximate variance-covariance matrix have been obtained. Some simulations have been performed to see the performances of the MLEs. One data analysis has been performed for illustrative purpose.

  • PDF

A new extension of Lindley distribution: modified validation test, characterizations and different methods of estimation

  • Ibrahim, Mohamed;Yadav, Abhimanyu Singh;Yousof, Haitham M.;Goual, Hafida;Hamedani, G.G.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.473-495
    • /
    • 2019
  • In this paper, a new extension of Lindley distribution has been introduced. Certain characterizations based on truncated moments, hazard and reverse hazard function, conditional expectation of the proposed distribution are presented. Besides, these characterizations, other statistical/mathematical properties of the proposed model are also discussed. The estimation of the parameters is performed through different classical methods of estimation. Bayes estimation is computed under gamma informative prior under the squared error loss function. The performances of all estimation methods are studied via Monte Carlo simulations in mean square error sense. The potential of the proposed model is analyzed through two data sets. A modified goodness-of-fit test using the Nikulin-Rao-Robson statistic test is investigated via two examples and is observed that the new extension might be used as an alternative lifetime model.

Generating and Validating Synthetic Training Data for Predicting Bankruptcy of Individual Businesses

  • Hong, Dong-Suk;Baik, Cheol
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.228-233
    • /
    • 2021
  • In this study, we analyze the credit information (loan, delinquency information, etc.) of individual business owners to generate voluminous training data to establish a bankruptcy prediction model through a partial synthetic training technique. Furthermore, we evaluate the prediction performance of the newly generated data compared to the actual data. When using conditional tabular generative adversarial networks (CTGAN)-based training data generated by the experimental results (a logistic regression task), the recall is improved by 1.75 times compared to that obtained using the actual data. The probability that both the actual and generated data are sampled over an identical distribution is verified to be much higher than 80%. Providing artificial intelligence training data through data synthesis in the fields of credit rating and default risk prediction of individual businesses, which have not been relatively active in research, promotes further in-depth research efforts focused on utilizing such methods.

Application of Bayesian Probability Rule to the Combination of Spectral and Temporal Contextual Information in Land-cover Classification (토지 피복 분류에서 분광 영상정보와 시간 문맥 정보의 결합을 위한 베이지안 확률 규칙의 적용)

  • Lee, Sang-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.445-455
    • /
    • 2011
  • A probabilistic classification framework is presented that can combine temporal contextual information derived from an existing land-cover map in order to improve the classification accuracy of land-cover classes that can not be discriminated well when using spectral information only. The transition probability is computed by using the existing land-cover map and training data, and considered as a priori probability. By combining the a priori probability with conditional probability computed from spectral information via a Bayesian combination rule, the a posteriori probability is finally computed and then the final land-cover types are determined. The method presented in this paper can be adopted to any probabilistic classification algorithms in a simple way, compared with conventional classification methods that require heavy computational loads to incorporate the temporal contextual information. A case study for crop classification using time-series MODIS data sets is carried out to illustrate the applicability of the presented method. The classification accuracies of the land-cover classes, which showed lower classification accuracies when using only spectral information due to the low resolution MODIS data, were much improved by combining the temporal contextual information. It is expected that the presented probabilistic method would be useful both for updating the existing past land-cover maps, and for improving the classification accuracy.

A Fusion Algorithm considering Error Characteristics of the Multi-Sensor (다중센서 오차특성을 고려한 융합 알고리즘)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.4
    • /
    • pp.274-282
    • /
    • 2009
  • Various location tracking sensors; such as GPS, INS, radar, and optical equipment; are used for tracking moving targets. In order to effectively track moving targets, it is necessary to develop an effective fusion method for these heterogeneous devices. There have been studies in which the estimated values of each sensors were regarded as different models and fused together, considering the different error characteristics of the sensors for the improvement of tracking performance using heterogeneous multi-sensor. However, the rate of errors for the estimated values of other sensors has increased, in that there has been a sharp increase in sensor errors and the attempts to change the estimated sensor values for the Sensor Probability could not be applied in real time. In this study, the Sensor Probability is obtained by comparing the RMSE (Root Mean Square Error) for the difference between the updated and measured values of the Kalman filter for each sensor. The process of substituting the new combined values for the Kalman filter input values for each sensor is excluded. There are improvements in both the real-time application of estimated sensor values, and the tracking performance for the areas in which the sensor performance has rapidly decreased. The proposed algorithm adds the error characteristic of each sensor as a conditional probability value, and ensures greater accuracy by performing the track fusion with the sensors with the most reliable performance. The trajectory of a UAV is generated in an experiment and a performance analysis is conducted with other fusion algorithms.

Optimization of Domain-Independent Classification Framework for Mood Classification

  • Choi, Sung-Pil;Jung, Yu-Chul;Myaeng, Sung-Hyon
    • Journal of Information Processing Systems
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 2007
  • In this paper, we introduce a domain-independent classification framework based on both k-nearest neighbor and Naive Bayesian classification algorithms. The architecture of our system is simple and modularized in that each sub-module of the system could be changed or improved efficiently. Moreover, it provides various feature selection mechanisms to be applied to optimize the general-purpose classifiers for a specific domain. As for the enhanced classification performance, our system provides conditional probability boosting (CPB) mechanism which could be used in various domains. In the mood classification domain, our optimized framework using the CPB algorithm showed 1% of improvement in precision and 2% in recall compared with the baseline.

The Analytic Performance Model of the Superscalar Processor Using Multiple Branch Prediction (독립시행의 정리를 이용하는 수퍼스칼라 프로세서의 다중 분기 예측 성능 모델)

  • 이종복
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1009-1012
    • /
    • 1999
  • An analytical performance model that can predict the performance of a superscalar processor employing multiple branch prediction is introduced. The model is based on the conditional independence probability and the basic block size of instructions, with the degree of multiple branch prediction, the fetch rate, and the window size of a superscalar architecture. Trace driven simulation is performed for the subset of SPEC integer benchmarks, and the measured IPCs are compared with the results derived from the model. As the result, our analytic model could predict the performance of the superscalar processor using multiple branch prediction within 6.6 percent on the average.

  • PDF

Development of Integrity Assessment Model for Reinforced Concrete Highway Bridges Using Fuzzy Concept (Fuzzy 개념을 이용한 RC도로교의 건전성평가 모델 개발)

  • Na, Ki-Hyun;Park, Ju-Won;Lee, Cheung-Bin;Jung, Chul-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.151-161
    • /
    • 1998
  • In this study, an attempt is made to apply the concept of fuzzy-bayesian theory to the integrity assessment of RC highway bridge, and uncertainty states are represented in terms of fuzzy sets which define several linguistic variables such as "very good", "good", "average", "poor", "very poor", etc. Especially, the concept of fuzzy conditional probability aids to derive a new reliability analysis which includes the subjective assessment of engineers without introducing any additional correction factors. The fuzzy concept are also used as reliability indexes for the condition assessment based on the proposed models, the proposed fuzzy theory-based approach with the results of visual inspection and extensive field load tests are applied to the integrity assessment of a new RC highway bridge, namely, Jichok bridge.

  • PDF

Compiler Analysis Framework Using SVM-Based Genetic Algorithm : Feature and Model Selection Sensitivity (SVM 기반 유전 알고리즘을 이용한 컴파일러 분석 프레임워크 : 특징 및 모델 선택 민감성)

  • Hwang, Cheol-Hun;Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • Advances in detection techniques, such as mutation and obfuscation, are being advanced with the development of malware technology. In the malware detection technology, unknown malware detection technology is important, and a method for Malware Authorship Attribution that detects an unknown malicious code by identifying the author through distributed malware is being studied. In this paper, we try to extract the compiler information affecting the binary-based author identification method and to investigate the sensitivity of feature selection, probability and non-probability models, and optimization to classification efficiency between studies. In the experiment, the feature selection method through information gain and the support vector machine, which is a non-probability model, showed high efficiency. Among the optimization studies, high classification accuracy was obtained through feature selection and model optimization through the proposed framework, and resulted in 48% feature reduction and 53 faster execution speed. Through this study, we can confirm the sensitivity of feature selection, model, and optimization methods to classification efficiency.