• 제목/요약/키워드: a acceleration set

검색결과 283건 처리시간 0.028초

Speech Feature Selection of Normal and Autistic children using Filter and Wrapper Approach

  • Akhtar, Muhammed Ali;Ali, Syed Abbas;Siddiqui, Maria Andleeb
    • International Journal of Computer Science & Network Security
    • /
    • 제21권5호
    • /
    • pp.129-132
    • /
    • 2021
  • Two feature selection approaches are analyzed in this study. First Approach used in this paper is Filter Approach which comprises of correlation technique. It provides two reduced feature sets using positive and negative correlation. Secondly Approach used in this paper is the wrapper approach which comprises of Sequential Forward Selection technique. The reduced feature set obtained by positive correlation results comprises of Rate of Acceleration, Intensity and Formant. The reduced feature set obtained by positive correlation results comprises of Rasta PLP, Log energy, Log power and Zero Crossing Rate. Pitch, Rate of Acceleration, Log Power, MFCC, LPCC is the reduced feature set yield as a result of Sequential Forwarding Selection.

A Study on Real-Time Slope Monitoring System using 3-axis Acceleration

  • Yoo, So-Wol;Bae, Sang-Hyun
    • 통합자연과학논문집
    • /
    • 제10권4호
    • /
    • pp.232-239
    • /
    • 2017
  • The researcher set up multiple sensor units on the road slope such as national highway and highway where there is a possibility of loss, and using the acceleration sensor built into the sensor unit the researcher will sense whether the inclination of the road slope occur in real time, and Based on the sensed data, the researcher tries to implement a system that detects collapse of road slope and dangerous situation. In the experiment of measuring the error between the actual measurement time and the judgment time of the monitoring system when judging the warning of the sensor and falling rock detection by using the acceleration sensor, the error between measurement time and the judgment time at the sensor warning was 0.34 seconds on average, and an error between measurement time and judgment time at falling rock detection was 0.21 seconds on average. The error is relatively small, the accuracy is high, and thus the change of the slope can be clearly judged.

Compensation techniques for experimental errors in real-time hybrid simulation using shake tables

  • Nakata, Narutoshi;Stehman, Matthew
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1055-1079
    • /
    • 2014
  • Substructure shake table testing is a class of real-time hybrid simulation (RTHS). It combines shake table tests of substructures with real-time computational simulation of the remaining part of the structure to assess dynamic response of the entire structure. Unlike in the conventional hybrid simulation, substructure shake table testing imposes acceleration compatibilities at substructure boundaries. However, acceleration tracking of shake tables is extremely challenging, and it is not possible to produce perfect acceleration tracking without time delay. If responses of the experimental substructure have high correlation with ground accelerations, response errors are inevitably induced by the erroneous input acceleration. Feeding the erroneous responses into the RTHS procedure will deteriorate the simulation results. This study presents a set of techniques to enable reliable substructure shake table testing. The developed techniques include compensation techniques for errors induced by imperfect input acceleration of shake tables, model-based actuator delay compensation with state observer, and force correction to eliminate process and measurement noises. These techniques are experimentally investigated through RTHS using a uni-axial shake table and three-story steel frame structure at the Johns Hopkins University. The simulation results showed that substructure shake table testing with the developed compensation techniques provides an accurate and reliable means to simulate the dynamic responses of the entire structure under earthquake excitations.

드론의 곡선 비행을 위한 구간별 등가속 조건의 기준 궤적 생성 방법 (A Reference Trajectory Generation Method with Piecewise Constant Acceleration Condition for the Curved Flight of a Drone)

  • 장종태;공현철;유준
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.233-240
    • /
    • 2016
  • This paper describes a three-dimensional reference trajectory generation method for giving commands to an unmanned air vehicle (UAV). The trajectory is a set of consecutive curves with constant acceleration during each interval and passing through via-points at specified times or speeds. The functional inputs are three-dimensional positions and times (or speeds) at via-points, and velocities at both boundaries. Its output is the time series of position values satisfying the piecewise constant acceleration condition. To be specific, the shape of the trajectory, known as the path, is first represented by splines using third degree polynomials. A numeric algorithm is then suggested, which can overcome the demerits of cubic spline method and promptly generate a piecewise constant acceleration trajectory from the given path. To show the effectiveness of the present scheme, trajectory generation cases were treated, and their speed calculation errors were evaluated.

편평족 달리기 시 충격 쇼크의 성분과 흡수 (Impact Shock Components and Attenuation in Flat Foot Running)

  • 류지선;임가영
    • 한국운동역학회지
    • /
    • 제25권3호
    • /
    • pp.283-291
    • /
    • 2015
  • Objective : The purpose of this study was to determine the differences in the head and tibial acceleration signal magnitudes, and their powers and shock attenuations between flat-footed and normal-footed running. Methods : Ten flat-footed and ten normal-footed subjects ran barefoot on a treadmill with a force plate at 3.22m/s averaged from their preferred running speed using heel-toe running pattern while the head and tibial acceleration in the vertical axis data was collected. The accelerometers were sampled at 2000 Hz and voltage was set at 100 mv, respectively. The peak magnitudes of the head and tibial acceleration signals in time domain were calculated. The power spectral density(PSD) of each signal in the frequency domain was also calculated. In addition to that, shock attenuation was calculated by a transfer function of the head PSD relative to the tibia PSD. A one-way analysis of variance was used to determine the difference in time and frequency domain acceleration variables between the flat-footed and normal-footed groups running. Results : Peaks of the head and tibial acceleration signals were significantly greater during flat-footed group running than normal-footed group running(p<.05). PSDs of the tibial acceleration signal in the lower and higher frequency range were significantly greater during flat-footed running(p<.05), but PSDs of the head acceleration signal were not statistically different between the two groups. Flat-footed group running resulted in significantly greater shock attenuation for the higher frequency ranges compared with normal-footed group running(p<.05). Conclusion : The difference in impact shock magnitude and frequency content between flat-footed and normal-footed group during running suggested that the body had different ability to control impact shock from acceleration. It might be conjectured that flat-footed running was more vulnerable to potential injury than normal-footed running from an impact shock point of view.

Optimal earthquake intensity measures for probabilistic seismic demand models of ARP1400 reactor containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Azad, Md Samdani;Tran, Viet-Linh;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4179-4188
    • /
    • 2021
  • This study identifies efficient earthquake intensity measures (IMs) for seismic performances and fragility evaluations of the reactor containment building (RCB) in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). The computational model of RCB is constructed using the beam-truss model (BTM) for nonlinear analyses. A total of 90 ground motion records and 20 different IMs are employed for numerical analyses. A series of nonlinear time-history analyses are performed to monitor maximum floor displacements and accelerations of RCB. Then, probabilistic seismic demand models of RCB are developed for each IM. Statistical parameters including coefficient of determination (R2), dispersion (i.e. standard deviation), practicality, and proficiency are calculated to recognize strongly correlated IMs with the seismic performance of the NPP structure. The numerical results show that the optimal IMs are spectral acceleration, spectral velocity, spectral displacement at the fundamental period, acceleration spectrum intensity, effective peak acceleration, peak ground acceleration, A95, and sustained maximum acceleration. Moreover, weakly related IMs to the seismic performance of RCB are peak ground displacement, root-mean-square of displacement, specific energy density, root-mean-square of velocity, peak ground velocity, Housner intensity, velocity spectrum intensity, and sustained maximum velocity. Finally, a set of fragility curves of RCB are developed for optimal IMs.

기동표적 추적을 위한 유전 알고리즘 기반 상호작용 다중모델 기법 (A GA-Based IMM Method for Tracking a Maneuvering Target)

  • 이범직;주영훈;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.16-21
    • /
    • 2003
  • The accuracy in maneuvering target tracking using multiple models is resulted in by the suitability of each target motion model to be used. The interacting multiple model (IMM) method and the adaptive IMM (AIMM) method require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems, a genetic algorithm(GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to calculate the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulation.

기동 표적 추적을 위한 유전 알고리즘 기반 상호 작용 다중 모델 기법 (GA-Based IMM Method for Tracking a Maneuvering Target)

  • 이범직;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2382-2384
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구 (Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration)

  • 최정열;박상욱;정지승
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.1057-1063
    • /
    • 2023
  • 본 연구대상인 도시철도 침목플로팅궤도(STEDEF)는 구조물로 전달되는 진동을 저감시키기 위한 방진궤도이다. 현재 침목플로팅궤도의 침목방진패드 교체주기(정적 스프링강성 변화율, 25±2%)는 하중기반(궤도충격계수와 궤도지지강성)으로 설정되어 운영중인 실정이다. 그러나 대부분의 선행연구는 침목방진패드의 피로수명평가와 스프링강성 증가에 따른 궤도충격계수 및 궤도지지강성의 증가 등 하중기반의 구조적 안전성 측면의 연구가 진행되었다. 따라서 본 연구에서는 분석 구간별 도상 진동가속도를 측정하고 700만회 피로시험결과를 이용하여 구간별 침목방진패드 스프링강성을 산출하고자 한다. 구간별 산출한 침목방진패드 스프링강성을 해석제원으로 설정하여 도상 진동가속도를 해석적으로 도출하였다. 구간별 해석 도상 진동가속도가 현장측정 도상 진동가속도 범위 이내로 나타나 해석모델링의 적정성이 검증되었다. 도출된 스프링강성 변화에 따른 진동가속도 선도(g-k curve)를 이용하여 측정 도상 진동가속도로 침목방진패드 스프링강성을 추정하고자 한다. 따라서 측정 도상 진동가속도를 이용한 운행선로의 침목방진패드 스프링강성을 추정할 수 있는 기법을 제시하고자 한다.

임의의 인공지진 가속도 발생에 관한 연구 -설계응답 스펙트럼에 기초하여 - (A Study On Arbitrary Artificial Earthquake Acceleration Generation -Based On Design Response Spectrum of Arbitrary Damping Value-)

  • 우운택;김영문;노재선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1989년도 봄 학술발표회 논문집
    • /
    • pp.5-10
    • /
    • 1989
  • In this study, the basic concept of design response spectrum is briefly revi-ewed. To generate the artificial earthquake acceleration, the method of superpo-sition of cosine waves is used. Theoretical developments using F.F.T. and spect-ral density function are compared. The amplitude was derived by use of the peak factor and the phase angle is d-erived by use of Monte Carlo simulation. To smoothen the match, the calculated pseudo velocity respon-se spectrum is compared with input pseudo velocity response spectrum at a set of control frequencies. With the modified spectral density function, a new acceleration and pseudo velocity response spectrum are generat-ed.

  • PDF