• Title/Summary/Keyword: a SVD decomposition

Search Result 197, Processing Time 0.021 seconds

Effect of Ground Roll Suppression Based on Karhunen-Loeve Transform (카루넨-루베 변환을 이용한 탄성파 그라운드 롤 억제 효과)

  • Jang, Seonghyung;Lee, Donghoon
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.177-185
    • /
    • 2019
  • Ground roll is a surface wave which is usually observed in the land seismic data. It is one of the typical coherent noise. During the reflection data processing, ground roll is removed because it is considered as noise. This removal process often causes the loss of reflection signals if the ground roll overlaps reflection signals. In this study, we look over Karhunen-Loeve Transform (KLT) and analyze its effects to suppress the ground roll appropriately while reducing the reflection loss. Numerical tests in homogeneous elastic media show that the ground roll has been properly rejected. However, the field data application reveals that there is no significant suppression of ground roll when compared to band-pass filtering. This can be considered that it is hard to calculate horizontally aligned gathers in the field data because the ground roll contains a wide range of frequency bands. On the contrary, the result of singular value decomposition (SVD) filtering shows that the ground roll has been significantly reduced. It is thought that the SVD filtering performs better in the ground roll suppression than KLT because it is easy to calculate the horizontally aligned gathers in the SVD filtering.

Development of Inverse Solver based on TSVD in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 TSVD 기반의 역문제 해법의 개발)

  • Kim, Bong Seok;Kim, Chang Il;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.91-98
    • /
    • 2017
  • Electrical impedance tomography is a nondestructive imaging technique to reconstruct unknown conductivity distribution based on applied current data and measured voltage data through an array of electrodes attached on the periphery of a domain. In this paper, an inverse method based on truncated singular value decomposition is proposed to solve the inverse problem with the generalized Tikhonov regularization and to reconstruct the conductivity distribution. In order to reduce the inverse computational time, truncated singular value decomposition is applied to the inverse term after the generalized regularization matrix is taken out from the inverse matrix term. Numerical experiments and phantom experiments have been performed to verify the performance of the proposed method.

Discrete Wavelet Transform and a Singular Value Decomposition Technique for Watermarking Based on an Adaptive Fuzzy Inference System

  • Lalani, Salima;Doye, D.D.
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.340-347
    • /
    • 2017
  • A watermark is a signal added to the original signal in order to preserve the copyright of the owner of the digital content. The basic challenge for designing a watermarking system is a dilemma between transparency and robustness. If we want a higher rate of transparency, there has to be a compromise in terms of its robustness and vice versa. Also, until now, watermarking is generalized, resulting in the need for a specialized algorithm to work for a specialized image processing application domain. Our proposed technique takes into consideration the image characteristics for watermark insertion and it optimizes transparency and robustness. It achieved a 99.98% retrieval efficiency for an image blurring attack and counterfeits other attacks. Our proposed technique counterfeits almost all of the image processing attacks.

Pose-normalized 3D Face Modeling for Face Recognition

  • Yu, Sun-Jin;Lee, Sang-Youn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.984-994
    • /
    • 2010
  • Pose variation is a critical problem in face recognition. Three-dimensional(3D) face recognition techniques have been proposed, as 3D data contains depth information that may allow problems of pose variation to be handled more effectively than with 2D face recognition methods. This paper proposes a pose-normalized 3D face modeling method that translates and rotates any pose angle to a frontal pose using a plane fitting method by Singular Value Decomposition(SVD). First, we reconstruct 3D face data with stereo vision method. Second, nose peak point is estimated by depth information and then the angle of pose is estimated by a facial plane fitting algorithm using four facial features. Next, using the estimated pose angle, the 3D face is translated and rotated to a frontal pose. To demonstrate the effectiveness of the proposed method, we designed 2D and 3D face recognition experiments. The experimental results show that the performance of the normalized 3D face recognition method is superior to that of an un-normalized 3D face recognition method for overcoming the problems of pose variation.

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF

Performance Analysis of Quaternion-based Least-squares Methods for GPS Attitude Estimation (GPS 자세각 추정을 위한 쿼터니언 기반 최소자승기법의 성능평가)

  • Won, Jong-Hoon;Kim, Hyung-Cheol;Ko, Sun-Jun;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2092-2095
    • /
    • 2001
  • In this paper, the performance of a new alternative form of three-axis attitude estimation algorithm for a rigid body is evaluated via simulation for the situation where the observed vectors are the estimated baselines of a GPS antenna array. This method is derived based on a simple iterative nonlinear least-squares with four elements of quaternion parameter. The representation of quaternion parameters for three-axis attitude of a rigid body is free from singularity problem. The performance of the proposed algorithm is compared with other eight existing methods, such as, Transformation Method (TM), Vector Observation Method (VOM), TRIAD algorithm, two versions of QUaternion ESTimator (QUEST), Singular Value Decomposition (SVD) method, Fast Optimal Attitude Matrix (FOAM), Slower Optimal Matrix Algorithm (SOMA).

  • PDF

An application of wavelet transform toward noisy NMR peak suppression

  • Kim, Daesung;Kim, Dai-Gyoung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.1
    • /
    • pp.12-19
    • /
    • 2002
  • A shift-averaged Haar wavelet transform was introduced as a new and excellent tool to distinguish real peaks from the noise contaminated NMR signals. It is based on Haar wavelet transform and translation-invariant denoising process. Donoho's universal threshold was newly introduced to the shift-averaged Haar wavelet transform for the purpose of automated noise suppression, and was quantitatively compared with the conventional uniform threshold method in terms or threshold and signal to noise ratio (SNR). New algorithm was combined with a routine to suppress a large solvent peak by singular value decomposition (SVD). Combined algorithm was applied to the real spectrum that containing large solvent peak.

  • PDF

Face Recognition Using A New Methodology For Independent Component Analysis (새로운 독립 요소 해석 방법론에 의한 얼굴 인식)

  • 류재흥;고재흥
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.305-309
    • /
    • 2000
  • In this paper, we presents a new methodology for face recognition after analysing conventional ICA(Independent Component Analysis) based approach. In the literature we found that ICA based methods have followed the same procedure without any exception, first PCA(Principal Component Analysis) has been used for feature extraction, next ICA learning method has been applied for feature enhancement in the reduced dimension. However, it is contradiction that features are extracted using higher order moments depend on variance, the second order statistics. It is not considered that a necessary component can be located in the discarded feature space. In the new methodology, features are extracted using the magnitude of kurtosis(4-th order central moment or cumulant). This corresponds to the PCA based feature extraction using eigenvalue(2nd order central moment or variance). The synergy effect of PCA and ICA can be achieved if PCA is used for noise reduction filter. ICA methodology is analysed using SVD(Singular Value Decomposition). PCA does whitening and noise reduction. ICA performs the feature extraction. Simulation results show the effectiveness of the methodology compared to the conventional ICA approach.

  • PDF

Study on the response of circular thin plate under low velocity impact

  • Babaei, Hashem;Mostofi, Tohid Mirzababaie;Alitavoli, Majid
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.207-218
    • /
    • 2015
  • In this paper, forming of fully clamped circular plate by using low velocity impact system has been investigated. This system consists of liquid shock tube and gravity drop hammer. A series of test on mild steel and aluminum alloy plates has been done. The effect of varying both impact load and the plate material on the deflection are described. This paper also presents a simple model to prediction of mid-point deflection of circular plate by using input-output experimental data. In this way, singular value decomposition (SVD) method is used in conjunction with dimensionless number incorporated in such complex process. The results of obtained model have very good agreement with experimental data and it provides a way of studying and understanding the plastic deformation of impact loads.

Performance Analysis of IEEE 802.11n System adapting Frame Aggregation Methods (Frame Aggregation 기법을 적용한 IEEE 802.11n 시스템 성능 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.515-527
    • /
    • 2009
  • IEEE 802.11n is an ongoing next-generation WLAN(Wireless Local Area Network) standard that supports a very high-speed connection with more than 100Mb/s data throughput measured at the MAC(Medium Access Control) layer. Study trends of IEEE 802.11n show two aspects, enhanced data throughput using aggregation among packets in MAC layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, the former doesn't consider wireless channel and the latter doesn't consider aggregation among packets for reality. Therefore, this paper analyzes data throughput for IEEE 802.11n considering MAC and PHY connection. A-MPDU(Aggregation-MAC Protocol Data Unit) and A-MSDU(Aggregation-MAC Service Unit) is adapted considering multi-service in MAC layer, WLAN MIMO TGn channel using SVD(Singular Value Decomposition) is adapted considering MIMO and wireless channel in PHY layer. Consequently, Simulation results shows throughput between A-MPDU and A-MSDU. Also, We use Ns-2(Network simulator-2) for reality.