• Title/Summary/Keyword: a Rotary machine

Search Result 187, Processing Time 0.027 seconds

Study on the Three Dimensional Magnetic Field Analysis of Superconducting Rotary Machine (초전도 회전기의 3차원 자계해석에 대한 연구)

  • 조영식;손명환;백승규;권영길;홍정표
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.501-506
    • /
    • 2003
  • A Superconducting Rotary Machine (SRM) is characterized by an air-cored machine with its rotor iron and stator iron teeth removed. For this reason, the SRM is featured by 3D magnetic flux distribution, which decreases in the direction of axis. Therefore, 3D magnetic field analysis method is required to know about characteristic of magnetic field distribution of SRM. In this paper, 3D flux distribution of SRM is calculated by analytical method. The magnetic field distribution of the field coils is calculated by Biot-Savart equation. The magnetic core is represented by magnetic surface polarities. This paper describes the combined use of above methods for the total field computation, and compares results of analytical method and 3D FEM(Finite Element Method).

A Study on Accelerated Life Test of Hypoid Gear Rotary Reducer (하이포이드 회전감속기의 가속 수명시험 방법에 관한 연구)

  • Yoon, Sang-hwan;Beak, Kwon-in;Kim, Heonkeong;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.63-68
    • /
    • 2017
  • In order to process more complicated and higher-precision parts, generally, an additional axis for a machine tool is needed which was an approach to minimize the cost of tool modification. A table with a rotary reducer that can rotate through the axis of the gear system was employed to a machine tool to achieve the purpose of adding an extra motion axis. In general, the motion of the rotary reducer is driven by a worm/wheel or helical gear system, which is different from the hypoid helical gear structure that used in this research. Reliability of guarantee of high accurancy throughout the whole life cycle is on of the critical factors to evaluate a rotary reducer in this field. In this paper, in order to evaluate life-time of rotary reducer, a low-cost accelerated life test was developed to satisfy the demands of clients.

A Study on the Design of Index Table Drive of Rotary Transfer Machines to Reduce Cycle Time (사이클 타임 단축을 위한 로터리 트랜스퍼 머신의 인덱스 테이블 구동부 설계에 관한 연구)

  • Huh, Ki-Seok;Park, Yong-Woo;Kim, Dong-Seon;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.60-65
    • /
    • 2022
  • This study focuses on the driving control design of an index, which is a key component of a rotary transfer machine that is effective in improving productivity and reducing manufacturing costs by shortening cycle time. Although various index studies have been conducted on the rotation of workpieces such as general-purpose machine tools and tilting indices, the development of an index for rotary transfer machines for transfer is insufficient. The index consists of a body, table, hydraulic cylinder, motor, reducer, and curved coupling. The torque of the table for driving was selected, and the angular velocity and torque pattern were simulated using the motor manufacturer's program. The specifications of the drive motor were determined based on the selected torque.

An Error Motion Analysis of Rotary Stage Driven By PZT (PZT로 구동되는 회전 스테이지의 오차 운동 분석)

  • Kim, Jin-Ho;Shin, Dong-Ik;Yun, Deok-Won;Han, Chang-Soo;Lee, Sang-Moo;Nam, Kyung-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.132-136
    • /
    • 2008
  • Axis of rotation error on rotary system are significant; such as the spindle radial error motion of a aligner, wire bonder and inspector machine which results in the poor state of manufactured goods. In this paper, the simple stage which consists of one PZT actuator and rotary encoder, is analyzed and measured by high resolution capacitance type displacement sensor. As the result of experiment, the paper discusses several issues that must be considered when designing rotary stage driven by PZT.

Finite Element Analysis and Dynamics Simulation of Mechanical Flux-Varying PM Machines with Auto-Rotary PMs

  • Huang, Chaozhi;Zhang, Zhixuan;Liu, Xiping;Xiao, Juanjuan;Xu, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.744-750
    • /
    • 2019
  • A new type of auto-rotary PM mechanical flux-varying PM machine (ARPMMFVPMM) is proposed in this paper, which can overcome the problem where the air-gap magnetic field of a PM machine is difficult to freely adjust. The topology structures of the machine and the mechanical flux-adjusting device are given. In addition, the operation principle of flux-adjusting is analyzed in detail. Furthermore, the deformation of a spring with the speed variation is obtained by virtual prototype technology. Electromagnetic characteristics including the flux distribution, air gap flux density, flux linkage, electromagnetic-magnetic-force (EMF), and flux weakening ability are computed by 2D finite element method (FEM). Results show that the machine has some advantages such as the good field control ability.

A study on the calibration of rotary table with NC machine (NC 공작기계의 Rotary Table 오차 측정 및 보상에 관한 연구)

  • 정세용;서석환;이응석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.636-642
    • /
    • 1996
  • 본 연구는 4축 또는 5축 NC 공작기계에 사용되는 Rotary Table의 오차를 측정하고 이를 보정하기 위한 연구이다. 먼저 일반적인 Rotary Table에 대한 오차모델이 설정되었으며, Rotary Table에서 존재하는 6가지의 오차를 각각 측정하였다. 측정방법은 3개의 길이오차는 1 개의 정밀볼(Master ball)과 3개의 LVDT, 3개의 각도 오차는 6각 폴리곤과 Autocollimator를 사용하여 측정하였다. 측정된 오차 성분들은 오차모델을 이용하여 보상치를 계산하였으며, 이 값은 추후 원래의 측정오차와 비교하는 방법으로 모델의 정확성을 검증할 것이다. NC 공작기계상에서 Rotary Table의 실제 보상 실험을 위하여 30$^{\circ}$간격으로 정밀한 볼이 장착된 볼-테이블을 설계하였다.

  • PDF

Development of Core Technologies of Multi-tasking Machine Tools for Machining Highly Precision Large Parts (고정밀 대형 부품가공용 복합가공기 원천기술 개발)

  • Jang, Sung-Hyun;Choi, Young-Hyu;Kim, Soo-Tae;An, Ho-Sang;Choi, Hag-Bong;Hong, Jong-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • In this study, three types of large scale multi-tasking machine tools together with core technologies involved have been developed and introduced; a multi-tasking machine tool for large scale marine engine crankshafts, a multi-tasking vertical lathe for windmill parts, and a large scale 5-axis machine tool of gantry type. Several special purpose devices has been necessarily developed for the purpose of handling and machining big and heavy workpieces accurately, such as PTD (Pin Turning Device) with revolving ring spindle for machining eccentric crankshaft pins, hydrostatic rotary table and steady rest for supporting and resting heavy workpieces, and 2-axis automatic swiveling head for high-quality free surface machining. Core technologies have been also developed and adopted on their detail design stage; 1) structural design optimization with FEM structural analysis, 2) theoretical hydrostatic analysis for the PTD and rotary table bearings, 3) box-in-box type cross-rail and octagonal ram design to secure machine rigidity and accuracy, 4) constant spindle rpm control against gravitational torque due to unbalanced workpiece.

Development of Rotary Transfer Forming Device for Process Reduction in Forming (프레스 공정 단축을 위한 회전식 트랜스퍼 성형장치 개발)

  • Kim, Seung-Gi;Youn, Jae-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.413-420
    • /
    • 2014
  • Although the transfer forming process has various advantages, it is also inefficient for the use of multiple press machines, especially for small part sizes. In this study, a new forming process was proposed to use multiple tandem dies in a single press machine. A rotary transfer forming device was developed to combine the advantages of the progressive and transfer forming process. In this study, a detailed forming process using this device was analyzed, and the device was designed to perform four series of tandem forming processes in a single press. In order to analyze the feasibility of this forming process, simple forming dies were made. As a result, the position accuracy was 4 arcsec, and the forming speed reached up to 20 strokes per minute. It is thought that this rotary transfer forming device can help to save initial setup costs through the more efficient use of space in a press machine.

A FPGA Implementation of a Rotary Machine Receiver with Detecting a Header on the Asynchronous Serial Communication System (비동기 방식의 직렬통신 시스템에서 헤드 검출 기능을 가진 회전기용 리시버의 FPGA 구현)

  • Kang, Bong-Soon;Lee, Chang-Hoon;Kim, In-Kyu;Ha, Ju-Young;Kim, Ju-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.88-94
    • /
    • 2005
  • This paper presents the design and implementation of a receiver operating between a rotary machine encoder and DSP. The receiver connects with the encoder using 1 bit serial data and DSP using 16 bits bus line. The receiver and encoder use the different operating frequency each other. We suggest a new apparatus and method of synchronized code for header detection in 1bit serial communication. The system operating frequency can be changed into 20MHz or 60MHz by using the external port such as 'clk_select'.

Development of an Accuracy Simulation Technology for Mechanical Machines (기계장비 정밀도 시뮬레이션 기술 개발)

  • Park, Chun-Hong;Hwang, Joo-Ho;Lee, Chan-Hong;Song, Chang-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.259-264
    • /
    • 2011
  • Authors are carrying out a national project which develops an accuracy simulation technology of mechanical machines to predict the stiffness and accuracy of machine components or entire machine in the design stage. Analysis methods in this technology are generalized to achieve the wide applicability and to be utilized as a web based platform type. In this paper, outline of the project such as concept, aim and configuration is introduced. Contents of the research are also introduced, which are composed of four main research fields; structural dynamics, linear motion analysis, rotary motion analysis and control and vibration analysis. Finally, a future plan is presented which is made up with three stages for the advance toward an ultimate manufacturing tools.