• Title/Summary/Keyword: a PID control

Search Result 1,789, Processing Time 0.032 seconds

Formation Control of Mobile Robots using Adaptive PID Controller (적응 PID 제어기를 이용한 이동로봇의 군집제어)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2554-2561
    • /
    • 2015
  • In this paper, we strengthen the advantages of a simple PID controller as a study on the formation control of mobile robots and propose an adaptive PID controller with robust performance at the dynamics characteristics of following robot. Simulation studies show that the adaptive PID controller has better keeping constant distance and angle such as tracking performance of following robot for the formation control than a conventional PID controller. This is the proposed adaptive PID controller to change the gains is found to represent the best performance. This is able to verify that the performance of the proposed adaptive PID controller is excellent.

Analysis and Design of a Separate Sampling Adaptive PID Algorithm for Digital DC-DC Converters

  • Chang, Changyuan;Zhao, Xin;Xu, Chunxue;Li, Yuanye;Wu, Cheng'en
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2212-2220
    • /
    • 2016
  • Based on the conventional PID algorithm and the adaptive PID (AD-PID) algorithm, a separate sampling adaptive PID (SSA-PID) algorithm is proposed to improve the transient response of digitally controlled DC-DC converters. The SSA-PID algorithm, which can be divided into an oversampled adaptive P (AD-P) control and an adaptive ID (AD-ID) control, adopts a higher sampling frequency for AD-P control and a conventional sampling frequency for AD-ID control. In addition, it can also adaptively adjust the PID parameters (i.e. $K_p$, $K_i$ and $K_d$) based on the system state. Simulation results show that the proposed algorithm has better line transient and load transient responses than the conventional PID and AD-PID algorithms. Compared with the conventional PID and AD-PID algorithms, the experimental results based on a FPGA indicate that the recovery time of the SSA-PID algorithm is reduced by 80% and 67% separately, and that overshoot is decreased by 33% and 12% for a 700mA load step. Moreover, the SSA-PID algorithm can achieve zero overshoot during startup.

A tuning method for robust PID controller (강인 PID 제어기 설계)

  • 윤상준;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.585-588
    • /
    • 1996
  • The conventional output feedback robust control designs are very useful for systems under parameter perturbation and uncertain disturbance. However these designs are very complicated and not easily implemented for industrial applications. So, this paper proposes a robust PID controller design method via genetic searching algorithm.

  • PDF

A Dual PID Controller for High-Accuracy Positioning of Ink Jet Printer Media Advance System (잉크젯 프린터 용지 이송 장치의 정밀 위치 제어를 위한 이중 PID 제어기의 설계)

  • 조영완
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.317-324
    • /
    • 2004
  • The ink jet printer media advance system is required to be exactly driven to the target position via tracking the reference velocity profile to obtain the high quality print image. A single gain PID controller is not sufficient to fulfill the control objectives, the exact velocity tracking and the accurate positioning, at the same time. A dual PID controller and its switching strategy are presented in this paper to achieve the control objectives. The media advance system is controlled by two separate PID controllers, one of which is for velocity control, and the other is for position control. A PID controller controls the velocity of the media advance system until it reaches the predetermined switching position. When the media advance system passes the predetermined position, the controller is switched to the other PID controller which is more profitable for exact positioning. The switching position is determined by the estimated stop distance. The simulation and experimental results are presented to show the validity and effectiveness of the proposed controller.

Real-time Adaptive PID Temperature Control that limits Overshoot (오버슈트를 제한하는 실시간 적응형 PID 온도제어)

  • Jin Moon Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.957-966
    • /
    • 2023
  • In this paper, we propose a new real-time adaptive PID temperature control technique. This is a technique that prevents overshoot by introducing a model that represents the control object. To prevent excessive integration that causes overshoot, integral control adjusts the integral gain to track the heat loss of the model in real time. In the conventional PID control, the integration was dependent on proportional control and the gain was fixed to a constant. As a result, applying two gains that mismatch each other could cause excessive overshoot. However, the proposed adaptive control actively eliminates overshoot so that the integral control amount does not always exceed the heat loss. The cause of overshoot in PID control is integration. Basically, proportional control does not cause overshoot. Therefore, according to the proposed technique, adaptive PID control without the need for tuning experiments can be realized.

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

Attitude Control of Helicopter Simulator System using A Hybrid GA-PID WAVENET Controller (Hybrid GA-PID WAVENET 제어기를 이용한 모형 헬리콥터 시스템의 자세 제어)

  • 박두환;지석준;이준탁
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.433-439
    • /
    • 2004
  • The Helicopter Simulator System is non-linear and complex. Futhermore, because of absence of its accurate mathematical model, it is difficult to control accurately its attitudes such as elevation angle and azimuth one. Therefore, we proposed a Hybrid GA-PID WAVENET(Genetic Algorithm Proportional Integral Derivative Wavelet Neural Network)control technique to control efficiently these angles. The proposed Hybrid GA-PID WAVENET is made through the following process. First, the WAVENET fundamental functions are defined. And their dilation and translation values are adjusted by GA to construct the optimal WAVENET controller. Secondly, the proportional, integral, and derivative gain coefficients of PR controller are tuned optimally. Finally, WAVENET controller which has a good transient characteristic and GA-PE controller which has a good steady state characteristic is adequately combined in hybrid type. Through the computer simulations, it is proved that the Hybrid GA-PE WAVENET control technique has a more excellent dynamic response than PID control technique and GA-PID one.

Adaptive-Tuning of PID Controller using Self-Recurrent Neural Network (자기순환 신경망을 이용한 PID 제어기의 적응동조)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.121-124
    • /
    • 2001
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when th control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an adaptive-tuning type PID controller is constructed by self-recurrent Neural Network(SRNN). applying back-propagation(BP) algorithm. Form the result of computer simulation in the proposed controller, its usefulness is verified.

  • PDF

A PID learning controller for DC motors (DC 전동기를 위한 PID 학습제어기)

  • 백승민;이동훈;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.347-350
    • /
    • 1996
  • With only the classical PID controller applied to control of a DC motor, a good (target) performance characteristic of the controller can be obtained, if all the model parameters of DC motor and operating conditions such as external load torque, disturbance, etc. are exactly known. However, in case when some of system parameters or operating conditions are uncertain or unknown, the fixed PID controller does not guarantee the good performance which is assumed with precisely known system parameters and operating conditions. In view of this and robustness enhancement of DC motor control system, we propose a PID learning controller which consists of a set of learning rules for PID gain tuning and learning of an auxiliary input. The proposed PID learning controller is shown to drive the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation results are given to demonstrate the effectiveness of the proposed PID learning controller, thereby showing whose superiority to the conventional fixed PID controller.

  • PDF

High Precision Pressure Control of a Pneumatic Chamber using a Hybrid Fuzzy PID Controller

  • Liu, Hao;Lee, Jae-Cheon;Li, Bao-Ren
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.8-13
    • /
    • 2007
  • A hybrid fuzzy PID controller for a pneumatic chamber is proposed in this paper. First, a mathematical model of a pneumatic pressure servocontrol system was developed where separate implementations of a PID controller and a fuzzy controller were made. The experimental results using a step input signal revealed that the PID controller accurately controlled the steady-state pressure but did not robustly handle parameter variations in the system while the fuzzy controller provided a fast rise time and low overshoot of the pressure in the system. In order to attain the advantages of both the fuzzy and PID controllers, a hybrid control scheme was developed. The experimental results show that the hybrid fuzzy PID controller proposed in this study does indeed possess the advantages of both PID and fuzzy controllers. Hence, it can be concluded that the hybrid fuzzy PID controller is suited for high-precision control of pressure in a pneumatic chamber.